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Caching in Large Wireless Networks
Georgios Paschos and Marios Kountouris

I. INTRODUCTION

With more than one billion wireless subscribers today and predictions for this number being tripled over the next
five years, the ICT industry is confronted with an avalanche of traffic demand. The unprecedented traffic increase
of wireless network traffic is a side effect of the info-revolution we are experiencing, fueled by the proliferation of
smart mobile devices and bandwidth-greedy video applications. The quarterly Internet monitoring report of Akamai
reveals that the network traffic has reached the exa-byte scale and keeps increasing steadily. Reports from Cisco
indicate that mobile traffic gets a larger and larger share of the pie, soon reaching 60% [1].

A well-established fundamental result states that long multihop wireless communication do not scale [2], i.e.,
the maximum common traffic rate for all flows is inversely proportional to the average number of hops. As a
result, the proposed techniques to tackle the communication challenges of future networks focus mostly on further
enhancing the link capacities and densifying the wireless network with more access points (APs) or base stations
(BSs), which are connected to Internet with wires. Several advanced transmission technologies have been proposed
and implemented in order to boost the performance of wireless networks. These advanced technologies include
the aggregation and concurrent use of different frequency carriers, the exploitation of the spatial dimension using
multi-antenna (MIMO) techniques, and the cooperative communication where multiple nodes are able to coordinate
their scheduling or transmission to serve users with adverse channel conditions. Despite continuous progress, all
these cutting edge physical layer (PHY) technologies do not allow significant enhancements as they are reaching
their theoretical limits. Ultra dense networks (UDNs) and heterogeneous networks (HetNets) are envisioned to
provide a significant network performance leap by deploying heterogeneous infrastructure, e.g., remote radio heads
(RRHs) and low power nodes such as picocells, small cells, femto APs, and relays. Bringing the network closer to
end-users, the link quality can be enhanced due to the link reduced distance and the larger number of cells, which
allows for more efficient spectrum reuse and therefore larger data rates. Nevertheless, in large-scale dense networks,
backhaul connectivity, capacity and reliability may become the performance bottleneck, without even mentioning
the additional cost associated with their deployment and maintenance.

Two decades ago, the World Wide Web was experiencing a similar challenge. Under the legacy client-server
model, every browser in the world needed to connect to the same remote server. The sum of traffic of these
end-to-end connections was creating a catastrophic increase of traffic in the Internet backhaul. The solution to
that challenge was web caching; a technique borrowed from computing processors and operating systems, which
exploits the temporal together with the spatial vicinity of user requests to improve the user-perceived Quality of
Service (QoS) and network performance metrics. The exploitation of web caching led to the proliferation of Content
Delivery Networks (CDNs), responsible for replicating content across the entire Internet today, and intercepting
more than 60% of traffic that is directed to remote servers, thereby eliminating a significant amount of backhaul
traffic.

With motivation from the success story of CDNs, it has been recently proposed to use caching to improve the
sustainability of wireless networks [3], [4]. Moving from CDNs to wireless networks does not simply produce a
“wireless CDN”. New paradigms of content replication appear, new schemes promise to improve efficiency by
combining caching with properties of PHY layer, while new challenges are imposed by mobility, geometrical
properties of wireless signal propagation, and the interference. Many longstanding models and the associated
conventional wisdom may have to be revisited in the coming years.

In this chapter we study the fundamental theoretical underpinnings of wireless networks with caching capabilities.
More specifically:
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1) We present an analytical tool for simplifying the calculations required to decide the optimal content replication
in a wireless network. This tool is used to derive the asymptotic laws of backhaul capacity scaling for multihop
wireless networks. The presented results consider (i) the number of networks nodes N , (ii) the number of
contents M , and (iii) the cache size K as the key system “size” parameters that increase arbitrarily at different
proportions. By studying the different cases we extract valuable intuition into the benefits of caching for the
sustainability of wireless networks.

2) We investigate the performance of dense cache-enabled small cell networks and provide crisp insights on how
the system operating values, the network geometry and interference affect the network performance. Using
tools from stochastic geometry to model the node distribution, we provide design guidelines where to place
the most popular content, i.e. at the mobile device or at the AP/BS. The effect of spatial correlation in content
requests is analyzed.

3) The chapter is concluded with a summary of interesting research directions for the future that can play a
crucial role in the proliferation of caching as a wireless network technique.

II. SUSTAINABLE MULTIHOP WIRELESS NETWORKS WITH CACHING

The sustainability of wireless multihop networks can be characterized by means of studying a network that grows
in size and examining its capacity scaling laws. In their seminal work [2], Gupta and Kumar studied the asymptotic
behaviour of multihop wireless networks when communications take place between N pairs of randomly chosen
nodes. In such a scenario the maximum data rate is O(1/

√
N), hence as the network grows (N → ∞) the data

rate vanishes to zero. This finding argues against the sustainability of multihop communications. Moreover, the
O(1/

√
N) law was shown to arise from geometric considerations of the 2D wireless transmissions [5], hence it is

impossible to breach under the classical random communicating pair model.
In this section we revisit the subject of the sustainability of wireless multihop networks with the added element

of caching. Each node in the network represents a user that is interested in a particular content (instead of
communicating with another node). The content can be replicated in the network caches, and thus the user can
conviniently retrieve it from a nearby cache, reducing in this way the number of traversed hops. The derived
asymptotic laws for capacity scaling suggest that caching has a powerful effect in the sustainability of wireless
networks, and there exist interesting regimes where the O(1/

√
N) law is breached.

The fundamental size parameters are the number of nodes N , and the number of contents M , and thus the scaling
laws will depend on how these increase to infinity. Another key parameter is the cache size K which depicts the
number of contents that can be cached at each node. Taking K to infinity represents an interesting regime that
reflects networks where nodes are upgraded as storage gets abundant and inexpensive [6]. Another influencing factor
is the content popularity. With skewed popularity, popular files are requested multiple times and hence smaller K
have a bigger impact on the system performance. As anticipated, in our analysis the popularity skewness crucially
affects the sustainability of wireless networks.

The presented analysis is a summary of [7]–[10] and involves the solution of a hard combinatorial optimization
that captures the best way of replicating contents with different popularities and retrieving them over network
routes. Fortunately, by relaxing the problem to a convex optimization and rounding the solution, an order optimal
performance can be obtained.

A. System Model

1) Network Model: The network is modelled by a grid topology as in Figure 1, which captures essential
characteristics of the wireless networks (i) multihop short-range communications are preferable [2], and (ii) the
network diameter scales as

√
N.1 More realistic random topologies are handled in [12], but they are shown to

result in the same scaling laws.
Formally, we consider a set of N nodes indexed by n ∈ N , {1, 2, . . . , N}, arranged on a

√
N ×

√
N square

grid on the plane. Each node is connected via undirected links to its four neighbours that lie next to it on the same
row or column. By keeping the node density fixed and increasing the network size N , we obtain a scaling network
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Fig. 1. For the scaling laws analysis, the network topology is considered to be a toroidal square grid.

similar to [2], with random pair throughput scaling as O(1/
√
N). Moreover, to avoid boundary effects, we consider

a toroidal structure as in [5].
2) Content Requests: Nodes generate requests to a catalog of contents, indexed by m ∈ M , {1, 2, . . . ,M}.

Normally each node requests content m with rate λmn . Such a consideration would lead the analysis of sustainability
to the formation of the capacity region (which is the set of all rate vectors [λmn ] that are sustainable), see [13],
which however is expressed through a set of inequalities and will not provide a simple expression for the scaling
laws. Hence to simplify the exposition and get a quantitive result, we assume the symmetric case where all nodes
have λmn = λm, ∀n.

More specifically, we consider the Independent Reference Model (IRM) [14], according to which the requests
for file m are due to an independent Poisson process with intensity λpm, where pm represents the file popularity
distribution–the latter is assumed time-invariant.

Last, we fix λ = 1 and study the required link capacity to support the communications. This is the inverse of
the classical approach where we fix the link capacity and study the scaling of maximum supportable throughput.
For example, in a network where under fixed link capacities the throughput scales as O(1/

√
N), our model will

yield required link capacity scaling of Θ(
√
N) to support constant throughput λ = 1. More generally, the obtained

scaling laws for required link capacity can be inverted to reflect the throughput scaling laws. Accordingly, for
sustainability we require the link capacity to be as small as possible, ideally to be O(1).

3) Caching Model: Each node n is equipped with a cache, whose contents are denoted by the set Bn, a subset
of M. If a request at node n regards a file m that lies in Bn, then it is served locally. Due to the limited memory
space of the cache, m will often be not available in Bn, thus, node n will have to request m over the network from
some other node w that keeps m in its cache. We denote with [Rn,k] the set of routes connecting nodes to nearby
caches. The choice of the sets [Bn] and [Rn,k] crucially affects the network link loading.

Let, moreover, K be the storage capacity of nodes’ cache measured in the number of files it can store. This means
that all M files are of the same (unit) size, placing a constraint on the cardinality of cache contents |Bn| ≤ K. The
important size parameters of the system are N,M,K. The interesting regime that we will study is

K < M ≤ KN. (1)

The first inequality implies that the cache size K is not enough to fit all files and hence each node needs to make
a selection of files to cache. The second inequality requires that the total network cache capacity KN (summing
up all individual caches) is sufficient to store all files at least once, and thus each content request can be served.

B. Multihop Capacity Optimization: Relaxation & Rounding

Due to placement constraints |Bn| ≤ K, the structure of cache optimization problems is inherently combinatorial,
and thus they are hard to solve. In this section (i) we state the relevant problems for optimizing capacity scaling
laws with caching, (ii) propose a relaxed problem based on file densities which is easy to solve, and in this way
(iii) establish a feasible solution which is of the same order with the original combinatorial problem.

1Note that the grid model is not accurate for wireline networks where the diameter scales as logN , as node connectivity follows power
laws [11].



4

1) Joint Replication-Routing Problem: To yield the correct scaling law of required link capacities, it is necessary
to select the best placement and the best routing that minimizes the load at the worst link in the network. Let C`
be the traffic load carried by link `. The network is stable, not discarding requests, only if the capacity of link `
exceeds C` for all `. The link loads [C`] can be adjusted by (i) caching popular content (by means of choosing
the placement [Bn]) and (ii) load balancing across a set of routing paths [Rn,k] from caching node n to requesting
node k. Hence the correct scaling law of the required link capacities C∗ is identified as the value of the following
optimization:

PROBLEM 1: C∗ = Minimize[Bn],[Rn,m]max`C`, s.t.

1) |Bn| ≤ K, ∀n (cache constraint),
2)
∑

n 1{m∈Bn} ≥ 1, ∀m ∈M (all files are cached),
3) [Rn,m] are feasible routes

This joint optimization turns out to be a hard combinatorial problem2, not amenable to an easy-to-compute
solution. Therefore, we resort to simplifications and approximations that provide an order-optimal solution, i.e.,
whose value of the objective function is within a constant to the optimal, hard-to-compute minmaxC`. A first
step that preserves the order-optimality of the solution is the relaxation of the objective to the average link traffic
avg`C`; then routing variables [Rn,k] can be fixed to shortest paths without loosing optimality; these steps are
explained in detail in [8]. However, the decisive step involves breaking the coupling between the individual caches
[Bn]. To achieve this decoupling, we introduce a new notion, that of replication density of content m.

2) Relaxed Density-based Problem: Given a placement [Bn], consider the frequency of occurrence of each file
m in the caches, or replication density dm as the fraction of nodes that store file m in the network:

dm =
1

N

∑
n∈N

1{m∈Bn}.

Based on this metric, we define a simpler problem:

PROBLEM 2: C = Minimize[dm]

∑
m∈M

(
1√
dm
− 1

)
pm, s.t.

1) For any m ∈M, 1/N ≤ dm ≤ 1,
2)
∑

m∈M dm ≤ K.

In the above, we optimize on the densities dm, which express the fraction of caches containing file m. In the
objective, 1/

√
dm − 1 approximates (in-order) the average hop count from a random node to a cache containing

m. Weighted by the probability pm of requests on m, the summation expresses the average link load per request.
Additionally, the constraint

∑
m∈M dm ≤ K reflects another relaxation, whereby the cache size constraint is only

satisfied on the average in the network. Observe that we have removed the individual cache constraints, and a
feasible solution to problem 2 may yield file densities that correspond to caching more than K files in one node.

It is clear that any feasible solution of problem 1 yields a file density [dm] that is feasible for problem 2, but
not vice versa, hence the density-based formulation is a relaxed version of the original min-max problem [8] and
we have

C = O(C∗).

In particular, problem 2 is convex and its unique solution can be found using the Karush-Kuhn-Tucker (KKT)
conditions. Regarding the constraints on dm about its minimum and maximum value, either one of them can be an
equality, or none. This partitions M into three subsets, the ‘up-truncated’ M

�

= {m : dm = 1} containing files
stored at all nodes, the ‘down-truncated’ M � = {m : dm = 1/N} containing files stored in just one node, and the
complementary ‘non-truncated’ M

�
=M\ (M

�

∪M� ) of files with 1/N < dm < 1. Arranging pm in decreasing
order, the partitions become M

�

= {1, 2, . . . , l − 1}, M
�
= {l, l + 1, . . . , r − 1}, and M � = {r, r + 2, . . . ,M}; l

and r are integers with 1 ≤ l ≤ r ≤M + 1. The solution dm is equal to

2The cache optimization problem of interest bears resemblance to database location problem, see [15].
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dm =


1, m ∈M

�

, (2a)

K − l + 1− M−r+1
N∑

j∈M
�

p
2

3

j

p
2

3
m, m ∈M

�
, (2b)

1/N, m ∈M� . (2c)

Fig. 2 illustrates such an example solution, depicting the density dm, indices l and r, as well as sets M

�

, M
�
,

M � when file popularities follow the Zipf law (see Section II-C).
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Fig. 2. An example case of density dm and the M

�

,M
�

and M� partitions. Solid line plots the ∼ m− 2τ
3 law of m ∈ M

�
, when pm

follows Zipf’s law.

3) Discrete Density (Rounding): The solution (2) is not directly mapped to a feasible solution for Problem 1,
but we may construct one using a two-step process, (i) first rounding [dm] to [d◦m], and (ii) second placing the
content symmetrically on the network according to [d◦m] so that the constraints |Bn| ≤ K are satisfied. For (i), we
simply define d◦m , 4−ν

◦
m rounded to the largest power less or equal to [dm]

d◦m , max
{
4−i : 4−i ≤ dm, i ∈ {0, 1, . . . , ν}

}
. (3)

Then for (ii), [8] gives an algorithm to allocate the files M in the caches [Bn] given the replication densities
d◦m. The algorithm can be explained by means of Figure 3. We begin with the grey file which has d◦0 = 1, this file
is simply cached everywhere. Then for the file with d◦0 = 1/4, we focus on a 2 × 2 subgrid of nodes (any such
subgrid suffices but it helps to fix an origin as a reference). In this subgrid we try to fill the diagonal, which in this
case is achieved by placing file 1 at the coordinate (1, 1) (top left node in the grid). As a last step for this file, we
place replicas by tiling the subgrid everywhere in the network. The result is that file 1 is replicated with density
1/4, as prescribed by the solution. Then for the files with density 1/16 we enlarge the subgrid to 4× 4. In general
the subgrid has a size 2ν

◦
m × 2ν

◦
m and is aligned with all the considered subgrids. We then fill the subgrid with

the new files starting with the diagonal, notably files 2, and 3 in the example. Then files 4, 5, 6 are filled in the
second diagonal which is below the first, while 7 completes the second diagonal by wrapping up at the coordinate
(1, 4). During the filling, we only select nodes that have less files than the maximum. For example, when we are
filling object 2 in the subgrid 4 × 4, we skip the node (1, 1) since that node has already two files (file 0 and file
1), and we place file 2 at node (2, 2) which only had one file so far (file 0). Where would we place file 10 with
d◦10 = 1/64? We would consider the subgrid 8 × 8 (i.e. the entire grid), the first three diagonals are fully filled,
hence we would place it in the first open spot in the fourth diagonal, that is node (4, 1).

Using this placement, we ultimately obtain a feasible solution for Problem 1 with value C◦ = Ω(C). Finally,
the following result is established in [8].

THEOREM 1 [RELAXATION & ROUNDING YIELDS ORDER OPTIMAL LINK LOADS]: There exist positive constants
a, b that depend on the distribution [pm], and cache capacity K, such that

C∗ ≤ C◦ ≤ aC∗ + b.

Furthermore it is Θ(C∗) = Θ(C◦) = Θ(C).
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Fig. 3. An example of the canonical rounding used to obtain a feasible cache placement solution. Here, the following items are placed
d◦0 = 1, d◦1 = 1/4, d◦2 = · · · = d◦8 = 1/16.

In conclusion, we may derive the scaling laws of wireless networks with caching C∗ by directly using the relaxed
Problem 2 solution, C. We remark that since a, b above depend on K, scaling laws with respect to K need to
consider this dependence carefully. This is taken into account in the analysis of [10].

C. Asymptotic Laws for Zipf Popularity

To study the scaling of C, we switch from the arbitrary popularity to the Zipf law, which has been observed
to model well the content popularity of the traffic of WWW and other types of services in numerous traces in the
literature [12], [14], [16]–[20]. It is defined as follows:

pm =
1

Hτ (M)
m−τ , (4)

where Hτ (n) ,
∑n

j=1 j
−τ is the truncated zeta function evaluated at τ (also called the nth τ -order generalized

harmonic number), and τ is the parameter of the distribution, adjusting the rate of popularity decline with m.
Regarding parameter τ , values ≤ 1 are reported for web traffic, [21]–[23]. Interestingly, [24] measures τ = 1 at
proxies versus 1.4–1.6 at a ‘busy’ web server. Analyzing traces from mobile browsing, [25] report values in the
range of 1–1.5, while in User Generated Content (UGC) video, [26] fits popularity with a combination of Zipf
and Exponential Cut-off, where the Zipf component has τ in the ranges of about 0.98–1.47 and 0.45–1.09 in two
different scenarios. Last, content popularity in P2P systems was fitted with a τ = 0.95 in [27], and in a Video
on Demand system with 0.70 in [28]. As there is no conclusive answer about the value of τ , we consider all
possibilities in our investigation.

We derive an approximation for Hτ (n) by bounding the sum: for n ≥ m ≥ 0,∫ n

m
(x+ 1)−τdx ≤ Hτ (n)−Hτ (m) ≤ 1 +

∫ n

m+1
x−τdx,⇒{

(n+1)1−τ−(m+1)1−τ
1−τ ≤Hτ (n)−Hτ (m)≤ n1−τ−(m+1)1−τ

1−τ +1, if τ 6=1,

ln n+1
m+1≤Hτ (n)−Hτ (m)≤ ln n+1

m+2 , if τ=1.
(5)

Substituting the solution (2) and plugging in the Zipf distribution into the objective of Problem 2, it follows that

C ,
∑
m∈M

(
d
− 1

2
m − 1

)
pm = C

�
+ C � −

M∑
j=l

pm, (6)

where
∑M

j=l pm = O(1) (as it lies always in [0, 1]), and

C
�
,
∑
m∈M

�

pm√
dm

(2),(4)
=

[
H 2τ

3
(r − 1)−H 2τ

3
(l − 1)

] 3

2√
K − l + 1− M−r+1

N Hτ (M)
, (7)
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TABLE I
SCALING LAWS WITH CONSTANT CACHE SIZE

M M finite N→∞, then M ∼ KN , hence M = Θ(N)
M →∞ KN−M = ω(1) KN−M=O(1)

τ < 1 Θ(1) Θ
(√

M
)

Θ
(√

N
)

Θ
(√

N
)

C 1<τ < 3
2 Θ(1) Θ

(
M

3
2−τ

)
Θ
( √

N
(KN−M)τ−1

)
Θ
(√

N
)

τ > 3
2 Θ(1) Θ(1) Θ

( √
N

(KN−M)
3(τ−1)

2τ

)
Θ
(√

N
)

C � ,
∑
m∈M �

pm√
dm

(2),(4)
=
√
N

Hτ (M)−Hτ (r − 1)

Hτ (M)
. (8)

To analytically compute the law of C, we need to analyze l and r. Note that since M scales to infinity, l, r
may also scale to infinity, or not, depending on the actual solution (2). Moreover, observing that the expressions
(7)-(8) depend on Hτ , H 2τ

3
, we expect different cases to appear due to the form of (5). In fact, previous work [8]

yields 5 cases depending on the values of τ . These in terms are mapped to scaling laws via (7)-(8). The results are
presented in Table I. The cases τ = 1 and τ = 3/2 are omitted to avoid clutter; they are similar to the cases τ < 1
and τ > 3/2 up to a logarithmic factor.

D. Scaling Laws for Constant Cache Size K

Table I shows how the solution of Problem 2 scales with the system size parameters N (number of nodes/users),
and M (catalog size); K (cache size) in this table is a constant. From Theorem 1, the scaling of C also applies
to the required link capacity for sustaining a uniform request rate λ = 1. For example, a scaling Θ(1) means
that the network can sustain unit throughput even if the link capacities are (sufficiently large) constants; this is
the desirable case. On the other hand Θ(

√
M) means that to sustain unit throughput, the link capacity needs to

increase proportionally to the square root of the file catalog. Since in practical systems M is expected to grow with
the network size N , while the link capacity is expected to obey certain limits (like the Shannon limit), this means
that the network will be unsustainable under such a law. Recall that we may also inverse the scaling to see how
throughput will scale in a network with fixed link capacities. For example if we invert the law Θ(

√
N) it gives

λ = Θ(1/
√
N), which is the Gupta-Kumar scaling for random communicating pairs in a scaling network [2]. This

law appears in our analysis whenever the replication capacity KN −M = Θ(1) is low, i.e. almost all cache slots
are used to store each file once–see the last column of table I.

Since K is constant, the results are derived for different cases of how N and M scale to infinity together. The
second column corresponds to the case where only N scales and M is fixed, in which case the system is sustainable
(required link capacity Θ(1)). However, in practical systems the file catalog grows with the user population.

The third column refers to the case where we take the limits in order, first N →∞ and then M →∞, i.e. we
have M = o(N) and the catalog grows sublinearly to the network size. The scaling laws in this case relate to the
file catalog size, which is a slight improvement over the Gupta-Kumar scaling. Different scaling is obtained for
different values of τ , where larger values of τ improve the sustainability (decrease the required link capacity).

In the last two columns we set M = αKN for some positive α < 1, and then take the limit N → ∞. The
scaling laws in this case also depend on KN −M , i.e. how many replication slots are left in the caches after we
store each file once. There are two cases, (a) KN −M = ω(1), and (b) KN −M = O(1). In the first case, despite
M = αKN , there are enough replication slots to yield scalings that represent improvements over the Gupta-Kumar
scaling as long as τ > 1. In the second case, we obtain the Gupta-Kumar scaling irrespective of the value of τ .
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TABLE II
SCALING LAWS WITH SCALING CACHE SIZE

‘High’ K ‘Low’ K

τ < 1 O
(√

M
K

)
Θ
(√

N
)

C 1<τ < 3
2 O

(
M

3
2
−τ

√
K

)
Θ
( √

N
(KN−M)τ−1

)
τ > 3

2 O(1) Θ
(√

N
KN−M

)

E. Scaling the Cache Size K →∞
As memory becomes cheaper and cheaper, we may envisage the scenario where the cache size per node K also

scales to infinity. The extention of the analysis of (7)-(8) in the case K → ∞ is found in [10]. Here we briefly
discuss the resulting scaling laws presented in table II.

Considering how N,M,K grow, we can study the system in different regimes of operation, which complicates
the exposition of scaling laws. For this reason, we focus here on two specific regimes of interest. We compare the
total network memory KN to the file catalog M , and split the analysis to two cases (i) KN = Ω(M) and (ii)
KN = O(M) (in fact [10] provides also the asymptotic constant that separates the two regimes. The first case is
called ‘High’ K and the second ‘Low’ K.

1) ‘High’ K: The most interesting regime to explore for perfect sustainability is the one of C = O(1). As the
formulas show, to keep C bounded, the hardest case is on τ < 1: node cache capacity K should scale as fast as
content volume M . In the intermediate case of 1 < τ < 3/2, node capacity K has to scale with M , but slower, at
a sublinear power. The case of τ > 3/2 is quite interesting, as C = O(1) always holds true.

2) ‘Low’ K: This regime is characterized as unsustainable, because the increase of network node cache K and/or
node count N against content volume M is not sufficient to keep C low. First, note that when the replication storage
capacity beyond the storage of the primary copy is limited, i.e., KN −M = O(1), C scales as fast as

√
N , the law

of [2]. Observe, moreover, that for τ > 1,
√
N is scaled down by the capacity KN −M available for replication

beyond the primary copy at some power equal to
√
KN −M or (KN −M)τ−1 for τ > 3/2 or 1 < τ < 3/2,

respectively; this quantifies the gain from adding extra capacity in the network beyond the one required to store a
primary copy per file.

F. Discussion about the sustainability of wireless caching networks

We presented a joint delivery and replication problem that leads to the characterization of the sustainability of
multihop wireless networks with caching. After formulating the precise combinatorial problem on square lattice
networks, we relaxed it to a simple density-based problem, whose analysis permitted to derive the scaling laws of
the required link capacity. The key factors in network sustainability are a) the file popularity power law parameter
τ , as well as b) the relative scaling of the numbers of files vs. network nodes.

While our treatment so far characterizes the caching benefits for multihop networks, a different line of work
examines the caching scaling laws in the wireless broadcast medium using coding, [29], [30]. Next, we continue
our exposition zooming in the cellular topology of wireless networks, considering the exploitation of caching in
small cells with device-device cooperation.

III. CACHE-ENABLED SMALL CELL NETWORKS: MODELLING AND DESING TRADEOFFS

Cache-enabled small cell networks (SCNs) have been proposed as a potential solution for alleviating the backhaul
bottleneck problem [31]–[33]. The main idea is to introduce cache capacity at small cell base stations (SBSs)
to prefetch popular contents during off-peak hours before being requested by local users. Caching in wireless
networks also exploits the high degree of asynchronous content reuse caused by information-centric applications
such as video-on-demand (VoD), social networks and content sharing. When users request for some popular contents
already cached in the local SBSs, the service latency is largely reduced since it does not need to pass through the
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backhaul to retrieve the content from remote servers. The improved energy efficiency is also an important benefit
of small cell caching mainly due to the fact that repeated transmissions of the same content from the core network
to local SBSs are avoided.

A. Cache-enabled SCNs with Local User Interest Correlation

Prior studies investigating wireless caching problems often assume similar popularity pattern for all users in
the system. Under the consideration of different interest levels over requested content, a clustering algorithm is
proposed in [33] to group users into clusters based on their request profile. Optimal caching decisions are then
made at each SBS by using a distributed regret learning approach to minimize the total service delay.

We are interested here in the case where caching decisions are made at SBSs based on local users’ request pattern
rather than the global content popularity, since in cache-enabled SCNs each SBS only serves a small amount of
users. Specifically, each SBS constructs its local regular content library by sampling regularly requested files of
users in its sampling range, then determines the set of files to be cached under limited cache capacity. We choose
the conventional “cache the most popular files” strategy to give baseline analysis on the impact of user interest
correlation on the cache hit/miss probability. The results can be generalized to cases with more advanced caching
strategies as proposed in [34]. We assume Zipf-like distribution for the local regular content popularity in the same
region. Under stochastic spatial models for the SBS locations and user distribution, we derive the cache service
probability as a function of the maximum sampling distance. We also consider that there is a sampling cost, which
is modelled as a distance-dependent function. The tradeoff between the cache service probability and the sampling
cost is also studied, and the optimal sampling distance subject to a cost constraint is provided.

1) Network Model and Analysis: We consider a cache-enabled SCN model with limited storage space at each
SBS, serving its nearby users within a certain distance according to its transmit power constraint. We model the
SBS distribution on the two-dimensional Euclidean plane R2 by a homogeneous PPP Φc = {Yi, i ∈ N+} with
intensity λc, where Yi denotes the position of the i-th SBS. Users to be served are distributed according to another
independent homogeneous PPP Φu = {xj , j ∈ N+} with intensity λu, where xj denotes the position of the j-th
user.

We introduce the notion of “local user interest pattern”, which can be acquired when allowing each SBS to
sample the regularly requested content of all users in its sampling region of radius Rp. The small cell cachers
decide which files to cache based on the adopted caching policy. Assume there exists a maximum distance that a
SBS can serve, denoted by Rv, the disk centered at the SBS with radius Rv can be seen as the service region of
this SBS.

When increasing the sampling range, the SBSs may have better knowledge of local user interest pattern, but due
to the limited cache storage only the most popular files will be stored. Then, for a random user being sampled the
probability of finding its regular content cached at its covering SBSs will decrease with the sampling region size.
The service range constraint also gives un upper bound on the probability of an arbitrary user being served by the
small cell cachers. We denote this service probability by Psv. Increasing the sampling range also leads to higher
cost of the local request pattern learning at the SBSs. In this paper we focus on the influence of the sampling range
on the service probability and the sampling cost for different levels of local interest correlation among small cell
users.

Suppose that each user has a library of size J , which contains its regularly requested files. For simplicity, we
assume that all the files have equal unit size. Each SBS has limited cache storage size denoted by M , which is
the maximum number of files that can be stored. Denoting by N the number of users in the sampling region of a
SBS, from point process theory, we have E[N ] = λuπR

2
p [35].

When users in the same sampling region share similar interest in requested content, different users may have
overlapping files in their regular content libraries, so the overall regular content library size will not grow linearly
with the number of users in this area. Conditioning on having N users in the sampling region of a typical SBS, we
denote by C = {c1, . . . , cS} the local content library of the N users with S representing the library size. Denote by
g : N+ → N+ the mapping function from the number of users N to the local library size S. In reality S = g(N)
can be learned numerically at the SBSs and the approximate function can be found by data fitting. Here we assume
that g is a piecewise function and follows S = min (JN, dJ (1 + µ logN)e), where µ is a constant factor that
characterizes the similarity level of local user interest.
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For a given local regular content library, we assume that the popularity distribution of files in it follows the
Zipf-Mandelbrot law, that is, for the i-th most popular file we have its request probability as

pi =
Ω

(q + i)γ
(9)

where Ω =

(
S∑
n=1

(q + n)γ
)−1

is the normalization constant, q is the shift parameter which is related to the shifting

based on the Zipf distribution, and γ is the shape parameter, which defines the concentration (correlation) level of
the content popularity. Similarly to the g function, the real popularity distribution can be learned by sampling and
sorting the popularity of all requested files in the local region.

Note that µ in the g function defines how similar the regular content libraries of users in the same area are, γ in
the popularity distribution defines the relative disparity of content popularity in the local library. The combination
of these two factors gives full characterization of the correlation level of local user interest.

Service Probability Analysis. We consider at first a baseline caching policy, which is “cache the most popular
files”. Cache entities at the SBSs have identical and limited storage size as M files. Assume that we have a SBS
at the origin with N users in its sampling region of radius Rp. The local content library size is known as S. When
M ≥ S, all files in the local content library can be stored at the SBS. When M < S, due to the limited cache
storage only the most popular M files in the sampling region can be cached. The cache miss probability Pm, which
is the probability that a random file in the local regular content library C not being cached, can be given as

Pm =

S∑
i=M+1

pi =

S∑
i=M+1

1

(q + i)γ
S∑
n=1

(q + n)γ
. (10)

Evidently, Pm increases with S, which verifies the intuition that larger content library size leads to higher cache
miss probability when the cache storage capacity is limited. Assume that users outside the sampling range of a
SBS have almost negligible probability to find their regularly requested content in this small cell cache. The service
probability Psv is then denoted by the probability of the intersection of three events:
• E1 = user’s regular content library being sampled by at least one SBS,
• E2 = the requested content being cached,
• E3 = user in the service range of the sampling SBS.

Furthermore we have E1 ⊆ E3 if Rp ≤ Rv and E3 ⊂ E1 otherwise. In the case where Rp ≤ Rv, Psv can be given
by

Psv = P[user being sampled ∩ content being cached]

= 1− P[not being sampled]

−
∞∑
k=1

P[sampled by k cachers] · P[k cache miss]

= 1− e−λcπR2
p

−
∞∑
k=1

(
λcπR

2
p

)k
k!

exp
(
−λcπR2

p

) k∏
j=1

P jm, (11)

where P jm is the cache miss probability of the j-th SBS which has the typical user within its sampling range.
When different small cells have different request correlation levels, which corresponds to different γ in the Zipf
distribution, the cache miss probability can be given as

P jm =

S∑
i=M+1

1

(q + i)γj
S∑
n=1

(q + n)γj
, (12)

where γj is the shape parameter of the content popularity distribution in the sampling region of the j-th SBS.
It is easy to see that Psv increases monotonically with Rp, meaning that larger sampling distance gives higher
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probability of a random user to find its regularly requested content cached in the covering SBSs.
In the case where Rp > Rv, the service probability is given by

Psv = P[user in service range ∩ content being cached]

= 1− e−λcπR2
v

−
∞∑
k=1

(
λcπR

2
v

)k
k!

exp
(
−λcπR2

v

) k∏
j=1

P jm. (13)

Contrary to the previous case, for fixed Rv the service probability decreases with Rp, which is easy to understand
since larger sampling region corresponds to higher cache miss probability for users being sampled, while the number
of users that can be served will not increase with the sampling range due to the service range constraint. Combining
these two cases we have

Psv = P[user in service range ∩ content being cached]

= 1− e−λcπmin{Rp,Rv}2 −
∞∑
k=1

e−λcπmin{Rp,Rv}2 ·

(
λcπmin{Rp, Rv}2

)k
k!

k∏
j=1

P jm. (14)

From the above result we see that for a given constraint on the service range of a SBS, the service probability
increases with Rp till it reaches the service range limit Rv, then it decreases monotonically with Rp.

Sampling Cost Analysis The regular content sampling allows the SBSs to learn the interests of local users, thus
the service offered by small cell cachers can be better adapted to the local request pattern. On the other hand,
the power consumption for the sampling procedure must be taken into consideration for the purpose of energy
efficiency. Denote by Cs the sampling cost of the typical SBS at the origin with sampling region radius Rp, we
introduce a cost function for the sampling process, which depends on the distance from the sampled users to the
SBS, i.e.

Cs =
∑

j∈Φu
⋂
B(0,Rp)

f(‖xj − Y0‖) · η (15)

where ‖xj − Y0‖ is the Euclidean distance between the j-th user in the sampling region and the typical SBS at
the origin, f is a distance-dependent cost function, η is a constant cost factor. For simplicity we choose η = 1 and
inverse pathloss model for f as f(x) = xα where α is the pathloss exponent.

From Campbell’s theorem, we have the mean cost when averaging over different realizations of PPP as

E[Cs] = E

 ∑
j∈Φu

⋂
B(0,Rp)

‖xj − Y0‖α


= 2πλu

∫ Rp

0
rα · rdr

=
2πλu
α+ 2

(
Rα+2
p − 1

)
. (16)

We see that the sampling cost increases linearly with the user density and follows power law of order α + 2
growth with the sampling region radius. Note that in dense network deployments, larger sampling distance results
in improved learning of the request pattern; however the sampling cost may be prohibitively high and should be
taken into account when designing the optimal sampling distance.

2) Optimal Sampling Range under Cost Constraint: In Section III-A1 we gave basic results on the service
probability and sampling cost for cache-enabled small cell networks with local request pattern learning. Based on
our assumptions on user interest correlation, we can gain insight on how the service probability and cost scale with
the sampling range.

Fig. 4 shows an example of the service probability as a function of the sampling region radius when there are
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Fig. 4. Service probability vs. sampling range with infinite service range. q = 0, γ = 1.

no constraint on the service range. We see that increasing sampling range gives higher service probability, but
the increment tends to saturate when Rv is relatively large. By taking into consideration the limited service range
while ignoring the sampling cost, the optimal sampling region size is equal to Rv since it gives the highest service
probability, as we have analyzed in Section III-A1. In this section, we search the optimal sampling range which
gives sufficiently good service probability while assuring the sampling cost is below a given constraint.

We formulate the problem as follow:
R∗p = argmax

Rp
Psv (17)

Subject to:

Rp ∈ [0, Rv], (18)

Cs(R
∗
p) < Cmax, (19)

Cmax is the predefined cost constraint. The first condition comes from the fact that when Rp > Rv the service
probability decreases monotonically with Rp. The second condition is due to the sampling cost constraint.

With the help of (16), we can derive the constraint on Rp to satisfy (19) as

R∗p <

(
Cmax(α+ 2)

2πλu
+ 1

) 1

α+2

. (20)

Since Psv is a monotonically increasing function of Rp for Rp ∈ [0, Rv], combining these two constraints we have

the optimal sampling distance given by R∗p = min

(
Rv,

(
Cmax(α+2)

2πλu
+ 1
) 1

α+2

)
.

3) Numerical Results: In this section we validate our analysis on cache-enabled small cell networks with local
user interest sampling. We show the tradeoff between the small cell cache service probability and the sampling
cost for different levels of local user interest correlation and user densities.

We set λc = 2× 10−5 and λu = 8× 10−4 as the density of SBSs and of users to be served. The service region
of each SBS has radius Rv = 200 m. The regular content library size of each user is J = 10. The maximum cache
storage of a SBS is M = 50. We use S = min (JN, dJ (1 + 3 logN)e) as the mapping function from the number of
users to the overall local content library size. The popularity distribution is assumed to follow the Zipf-Mandelbrot
law with q = 0 (Zipf’s law). We assume the same shape parameter for the content popularity distribution in the
sampling region of all the SBSs, meaning that γj = γ for j = 1, · · · ,∞. Note that considering uniform or different
shape parameters for the popularity distribution does not change the general trend of how the sampling distance
affects the service probability Psv. Numerical results are presented with different values of the shape parameter
γ ∈ [0.25, 1.5], which correspond to different user interest correlation levels, in order to see how the cache service
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Fig. 5. (left) Service probability under different levels of user interest correlation. (right) Sampling cost vs. sampling range with distance-
dependent cost function.

performance scales with local user interest pattern.

B. Service Probability under Different Correlation Levels of Users’ Interest

In Section III-A1, we saw that the cache service performance depends on the local user interest correlation level.
In Fig. 5-(left) we plot the service probability Psv as a function of the sampling range Rp for γ = 0.25, 0.5, 1 and
1.5 respectively.

From Fig. 5-(left), we see that Psv increases with Rp before it reaches Rv = 200 m then decreases when Rp
continues to grow. However, the speed of decrease is relatively small compared to the growth in Rp ∈ [0, Rv],
especially for higher values of γ. This is because higher γ corresponds to higher concentration of content popularity.
Though increasing library size increases the number of files not being cached, the most popular files are cached
with higher probability, which still leads to lower cache miss probability in the sampling region.

Sampling Cost. Fig. 5-(right) shows the simulated sampling cost per SBS as a function of the maximum sampling
distance with the adopted distance-dependent cost function. The simulation results are obtained under different user
density settings and by averaging over 5000 PPP realizations. It shows the dramatic growth of the cost of local
regular content sampling when increasing the sampling distance Rp. In a high user density scenario, the cost issue
is of growing importance, showing the need for taking into consideration the sampling cost when searching for the
optimal sampling distance.

1) Conclusions: We investigated cache-enabled SCNs with local user interest sampling managed by SBSs for
local request pattern learning. We provided analytical and numerical results on the cache service performance and
the sampling cost, as well as the optimal sampling distance to maximize the cache service probability under a given
cost constraint. The main takeway of this paper is the idea of local regular content sampling and the influence of the
sampling distance on the cache service performance, which will be beneficial for designing the sampling procedure
of cache-enabled SCNs.

IV. D2D CACHING VS. SMALL CELL CACHING

Proximity-based content caching and distribution in wireless networks has been identified as a promising traffic
offloading solution for improving the capacity and the quality of experience (QoE) by exploiting content popularity
and spatio-temporal request correlation.

The concept of caching at the radio access network edge, termed here as small cell (SC) caching, is driven
by the bandwidth and latency gains from introducing caching capabilities to the small base stations (SBSs) and
reducing the backhaul utilization. In [32], the concept of FemtoCaching with distributed cache helpers is proposed
and the optimum way of assigning files to cache helpers is analyzed by minimizing the expected downloading time.
[31] studies the performance of cache-enabled small cell networks, deriving closed-form expressions for the outage
probability and average delivery rate under stochastic spatial distribution of the SBSs. A different approach is to
exploit the available storage space of mobile devices and distribute cached content to other devices in proximity
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through D2D communication. [36] discusses the throughput-outage tradeoff of D2D caching networks using a
protocol model for the spatial scheduling of coexisting D2D links. In [37] authors study the scaling behaviour of a
D2D network and give a closed-form expression for the optimal collaboration distance as a function of the system
model parameters. [38] considers a random caching strategy for stochastically distributed caching-server devices
to serve nearby user devices and proposes an algorithm to find the optimal caching probabilities of contents in the
request library.

At first sight, D2D caching and SC caching may bring comparable gains in terms of network throughput, area
spectral efficiency and energy efficiency. However, they are quite different in the following aspects:
• Cache capacity. Caching entities deployed in SBSs can have very large storage capability thanks to the low

cost of storage units. In contrast, user devices, such as cellphones and tablets, have relatively small storage
capacity and can only serve a rather small amount of requests generated by devices in their proximity.

• Transmit power and coverage. User devices normally transmit with much less power than SBSs, which in turn
corresponds to smaller covering range. As a result, the success probabilities of a cache-assisted transmission
in the above two cases are different.

• Density of cache-served requests. D2D communication usually involves small transmission distances. In
networks with high user density, in the case of D2D caching, more simultaneous links are allowed to coexist
in the same region sharing the same spectrum resources as compared to the case of SC caching. Moreover, a
special case in D2D caching is when a user finds its requested file stored in its own device. In that case, the
user request is satisfied without any delay and cost.

• Power consumption. Additional to the power consumption required by cache-assisted D2D or small cell
transmission, the power cost in the small cell backhaul is also a significant part. When a user request can not
be served locally, either through D2D communication or from the SBS caches, the requested content will be
retrieved from the core-network through the small cell backhaul. In general the backhaul power consumption
is much higher compared to the transmission power cost.

In this chapter, we take into account the aforementioned differences and compare the performances of caching in
user devices (i.e., D2D caching) and caching in the SBSs (i.e., SC caching), using models and tools from stochastic
geometry. We provide analytical expressions for key performance metrics, including the cache hit probability, the
density of cache-served requests and the average power consumption. The numerical results will be presented and
compared, which give us insight on the advantages and disadvantages of caching at the mobile devices and at the
radio access network edge.

In this section, we address the following question: where should popular content be cached in a wireless network?
For that, we model a wireless cellular network using stochastic geometry and analyze the performance of two
network architectures, namely caching at the mobile device allowing device-to-device (D2D) connectivity and local
caching at the radio access network edge (small cells). We provide analytical and numerical results to compare
their performance in terms of the cache hit probability, the density of cache-served requests and average power
consumption. Our results reveal that the performance of cache-enabled networks with either D2D caching or small
cell caching heavily depends on the user density and the content popularity distribution.

A. Network Model

We consider a small cell network (SCN) where the SBSs are distributed in the two-dimensional Euclidean plane
R2 according to a homogeneous Poisson Point Process (PPP) Φs with intensity λs. Mobile users are distributed
according to another independent homogeneous PPP Φu with intensity λu [35]. Caching capabilities can be enabled
either on user devices for potential D2D communication, referred to as D2D caching, or by installing storage units
at the SBSs, coined as SC caching.

Each mobile user makes a random request with probability ρ ∈ [0, 1]. As a result, the active users to be served form
a homogeneous PPP Φr

u with intensity ρλu (independent thinning). The inactive users form another homogeneous
PPP Φt

u with intensity (1−ρ)λu. They can serve as potential D2D transmitters in the case with D2D caching mode,
or remain silent if D2D communication is not enabled.

Depending on whether cache capability is enabled at the devices or at the edge/SBSs, when an active user
requests for a file, the following cases may happen:
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• with only D2D caching, if the requested file is not cached in its own device, the user searches for the file in
the devices in its proximity within a certain distance. If there is at least one potential D2D transmitter that
has the requested file cached, the file is transmitted from the nearest one. Otherwise, the user connects to the
nearest SBS in order to download the file from the core network through the backhaul.

• with only SC caching, the active user always connects to the nearest SBS. If its associated SBS has the file
cached inside, the SBS transmits the file directly to the user. Otherwise the file is downloaded from the core
network through the backhaul and then transmitted to the user.

We assume spectrum sharing among concurrent transmissions in such network, i.e. both D2D and small cell
communication links receive interference from coexisting transmitters.

1) Request Distribution and Caching Policies: We consider a finite content library F = {f1, · · · , fN} for the
user requests, where fi is the i-th most popular file and N is the library size. All files are assumed to have equal
size, which is normalized to one. We use the standard Zipf law for the popularity distribution, meaning that the
request probability of the i-th most popular file is

pi =
Ω

iγ
, (21)

where Ω =

(
N∑
j=1

j−γ

)−1
is the normalization factor and γ is the shape parameter of Zipf law, which defines the

correlation level of user requests. High values of γ means that most of the requests are generated from a few most
popular files. For a user making a random request, pi can be seen as the probability that the requested file is fi.

Given knowledge of the content popularity distribution, depending on whether D2D caching or SC caching is
adopted, we apply the following caching policies:
• with only D2D caching, since a random active user will most likely have multiple potential D2D transmitters,

each device will independently cache files subject to its capacity-limited storage according to a common
probability distribution, in order to increase the content diversity within the search distance [36]. The optimal
caching probabilities are determined by minimizing the average cache miss probability;

• with only SC caching, since an active user always connects to the nearest SBS, there are no overlapping
coverage areas of different SBSs. Thus, we apply the conventional “cache the most popular content” (MPC)
policy, meaning that all SBSs cache the same most popular files within their cache capacity.

The details of the caching policies for both cases are presented as follows.
D2D Caching with Probabilistic Cache Placement. Denote by Md the cache storage size of user devices, where

with a random D2D caching policy, each user stores fi with probability qi. Let Rd be the maximum search/discovery
distance of a user device for establishing D2D communication. The probability that no potential D2D transmitters
are found when fi is being requested is equivalent to the probability of having no points from Φt

u with independent
thinning probability qi in the searching area (void probability). The cache miss probability of fi within the discovery
distance Rd is given by

pim(Rd) = e−π(1−ρ)λuqiR2
d . (22)

The optimal caching probability vector q = [q1, · · · , qN ] for minimizing the average cache miss probability over
F can be found by solving the following optimization problem:

min
q

N∑
i=1

pie
−π(1−ρ)λuqiR2

d (23)

subject to:
N∑
i=1

qi −Md ≤ 0 (24)

qi ∈ [0, 1]. (25)

We use the optimal dual-solution searching (ODSA) algorithm proposed in [38] in order to find the optimal q. In
the remainder of the paper, it is assumed that all the results related to D2D caching are obtained using the optimal
caching probabilities.
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SC Caching with MPC Policy Denote by Ms the cache capacity of a SBS. According to the MPC caching policy,
only files fi with popularity order i ∈ [1,Ms] would be cached in each SBS.

B. Performance Analysis

The potential gain of wireless content caching is mainly captured by the cache hit probability, which gives
opportunity to handle user requests and to deliver content without having to retrieve it from the core network.
Furthermore, there are potential spatial reuse gains by establishing proximity-based cache-assisted communication
links sharing the same spectrum. In this section, we provide analytical results on several key performance metrics
for cache-enabled cellular networks with either D2D caching or SC caching.

1) Cache Hit Probability: The cache hit probability is the probability for a random active user to find its requested
file in local caches.

2) D2D Caching: With D2D caching, a cache hit request may happen in two cases:
• a user requesting for a file may find it stored in its own cache, we call this “self-request”;
• when the requested file is not cached in its own device, the user finds it in the cache space of its nearby

potential D2D transmitters within a distance Rd.
Denoting by pd

self the self-request probability of a random user, we have

pd
self =

N∑
i=1

piqi. (26)

The probability of an active user being served by a nearby potential D2D transmitter is given by

pd
r =

N∑
i=1

pi (1− qi)
(
1− e−π(1−ρ)λuqiR2

d

)
, (27)

where pd
hit,i = 1− e−π(1−ρ)λuqiR2

d is the probability to have at least one potential D2D transmitters within distance
Rd with file fi cached.

Therefore, the cache hit probability is the sum of (26) and (27), given by

pd
hit = pd

self + pd
r

= 1−
N∑
i=1

pi (1− qi) e−π(1−ρ)λuqiR2
d . (28)

SC Caching The cache hit probability in the case with SC caching is simply the probability that a user finds its
requested file stored in the cache of its associated SBS. According to the MPC caching policy, we have that

ps
hit =

Ms∑
i=1

pi. (29)

3) Success Probability of Cache-assisted Transmission: When an active user finds its requested file cached in
either the devices in proximity or the nearest SBS, it is not guaranteed that the cache-assisted transmission of the file
will be successful. We calculate here the success probability of a typical cache-assisted transmission conditioning
on having a receiver at the origin.

For a given realization of the network, we assume having K established cache-assisted communication links with
E[K] ≤ ρλu. For a random link i ∈ [1,K], the received signal-to-interference-plus-noise ratio (SINR) is given by

SINRi =
Pi|hi,i|2d−αi,i

σ2 +
∑

j∈T\{i} Pj |hj,i|2d
−α
j,i

,

where Pi = {Pd, Ps} denotes the transmit power of either a D2D transmitter or a SBS, depending on whether
caching capabilities are enabled on the mobile devices or at the SBSs; hj,i denotes the small-scale channel fading
from the transmitter j to the receiver i, which follows CN (0, 1) (Rayleigh fading); dj,i denotes the distance between
the transmitter j and the receiver i; σ2 denotes the background noise power. Note that interference comes not only
from cache-assisted transmissions, but also from the SBS-user links when the requested file of the user is not locally
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cached. Thus, in the D2D caching case, the set of active transmitters belong to T ⊆ {Φs∪Φt
u}. In the other case with

SC caching, T ⊆ Φs, because active users can only be served by the SBSs. We assume interference-limited network,
in which the background thermal noise is negligible. In the remainder of this analysis the success probability is
given as a function of the interference-to-interference ratio (SIR).

D2D Caching. For a random active user requesting for a file, as given in (27), with probability pd
r the requested

file is not cached in its own device, but in its nearby devices. Therefore, the density of cache-assisted communication
links is ρλup

d
r . Note that multiple users might find the same nearest D2D transmitter. In that case only one user

can connect to this device, others have to search for another D2D transmitter. Denote by Φd
t the set of active D2D

transmitters; although the resulting set is not distributed according to a homogeneous PPP, the density of Φd
t is

given by
λd

t = ρλup
d
r . (30)

The set of users that cannot find their requested files in local caches will be served by the SBSs. The density of
users to be served by the SBSs is λs

r = ρλu(1− pd
hit). According to the nearest SBS association, a Poisson-Voronoi

tessellation is generated. From [39], the void probability of a typical Voronoi cell can be approximated as

pvoid '
(
1 +

λs
r

3.5λs

)−3.5
. (31)

The density of active SBSs is thus given by

λs
t = λs (1− pvoid)

' λs

(
1−

(
1 +

ρλu(1−pd
hit)

3.5λs

)−3.5)
. (32)

Conditioning on having a typical D2D receiver at the origin with its associated transmitter at distance dx, and
assuming a homogeneous PPP for both active D2D transmitters Φd

t and active SBSs Φs
t , the success probability is

given as [40]

pd
suc = P

 Pd|hi,i|2d−αx∑
j∈Φd

t \{i}

Pd|hj,i|2d−αj,i +
∑
k∈Φs

t

Ps|hk,i|2d−αk,i
> θ


= E

[
LId (θd

α
x) · LIs

(
θ Ps
Pd
dαx

)]
= E

[
exp

(
− πd2xθ

2
α

sinc(2/α)

(
λd

t + λs
t (Ps/Pd)

2

α

))]
, (33)

where LIx(s) = E [exp (−sIx)] is the Laplace transform of interference Ix and θ is the SIR threshold for successful
D2D transmission. The expectation is over the distribution of dx and over the content library F .

When a cache hit occurs, the distribution of the D2D link distance dx depends on the popularity order of the
requested file. If fi is requested by the typical user, conditioning on having at least one potential D2D transmitter
within distance Rd, the pdf of the D2D link distance dx is given by

f idx(r) =

{
2π(1−ρ)λuqir

1−e−π(1−ρ)λuqiR
2
d
e−π(1−ρ)λuqir2 0 ≤ r ≤ Rd

0 r > Rd.
(34)

Then we have the approximate success probability when a cache hit of file fi happens, given by

pd
suc,i =

∫ Rd

0
exp

[
− πr2θ

2

α

sinc(2/α)

(
ρλup

d
r + λs

t (Ps/Pd)
2

α

)]

· 2π(1− ρ)λuqir

1− e−π(1−ρ)λuqiR2
d
e−π(1−ρ)λuqir2dr,

(35)

where pd
r and λs

t are given in (27) and (32), respectively.
SC Caching. In the case with SC caching, users are always connected to the nearest SBSs in both cache hit and

cache miss events. Denote by Φ̃s
t the set of active SBSs, similarly, using the void probability of Voronoi cell in
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(31), the density of active SBSs is given by

λ̃s
t ' λs

(
1−

(
1 +

ρλu

3.5λs

)−3.5)
. (36)

Conditioning on having the typical receiver at the origin with its associated SBS at distance ds and using nearest
SBS association, we have the pdf of ds given as

fds(r) = 2πλsr · e−πλsr. (37)

For a given SIR threshold θ, the success probability of the cache-assisted small cell transmission is given by

ps
suc = P

 Ps|hi,i|2d−αs∑
k∈Φ̃s

t \{i}
Ps|hk,i|2d−αk,i

> θ


=
∫∞
0 2πλsr · e−πλsr2 exp

(
− πλ̃s

tr
2θ

2
α

sinc(2/α)

)
dr, (38)

where λ̃s
t is given in (36).

4) Density of Cache-served Requests: A user request is said to be “served” if the requested file is found in local
caches and if the transmission of the file is successful. Based on the above results, we calculate the density of
cache-served requests, which is the average number of requests that can be successfully and simultaneously handled
by the local cache per unit area.

D2D Caching In the D2D caching case, a random user request can be served either by self-request or through
proximal D2D communication. Denote by µd

suc the density of cache-served requests, we have

µd
suc = ρλu

(
pd

self +
N∑
i=1

pi(1− qi)pd
hit,ip

d
suc,i

)
= ρλu

N∑
i=1

pi
[
qi + (1− qi)

(
1− e−π(1−ρ)λuqiR2

d

)
pd

suc,i

]
, (39)

where pd
suc,i is given in (35).

SC Caching In the SC caching case, the maximum number of cache-assisted transmissions in a given time slot is
limited by the density of the SBSs. The probability for a SBS to have at least one active user in its cell requesting
for files that are stored in its cache is given by

ps
t = 1−

(
1 +

ρλup
s
hit

3.5λs

)−3.5
. (40)

The density of cache-assisted transmission is λsp
s
t . Then, the density of cache-served requests, which is the density

of successful cache-served small cell transmission, is given by

µs
suc = λsp

s
tp

s
suc = λs

(
1−

(
1 +

ρλup
s
hit

3.5λs

)−3.5)
ps

suc, (41)

where ps
suc is given in (38).

5) Power Consumption: For a random user request, in a cache hit event, the consumed power for content delivery
contains only the transmit power of either the D2D transmitter or the associated SBS. In a cache miss event, the
requested file is first fetched from the core network via the backhaul and then transmitted from the nearest SBS to
the user. Thus, additional energy is consumed at the backhaul. Denote Pb the backhaul power consumption required
to handle a user request at a single SBS; we study below the power consumption per user request with either D2D
caching or SC caching.

For the case with D2D caching, recall that when self-request occurs, no energy is consumed to serve the request.
A random user request has probability pd

r to be served by a nearby D2D transmitter, and probability 1− pd
hit to be

served by the nearest SBS. We have the consumed power per user request given as

P d
avg = pd

rPd + (1− pd
hit)(Ps + Pb). (42)
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For the case with SC caching, when a random user request occurs, the transmission power of its nearest SBS
is always consumed for both cache hit and cache miss events. The backhaul power is additionally consumed with
probability 1− ps

hit. Thus we have

P s
avg = Ps + (1− ps

hit)Pb. (43)

C. Numerical Results

For numerical evaluation, we set the SBS density at λs = 10−5 and the user density at λs = K × 10−4, where
K is a proportion factor. We choose ρ = 0.2, meaning that 20% of the users will request for a file in the content
library F . The cache storage size at a SBS and at a user device are Ms = 104 and Md = 10, respectively. The
content library has size N = 105, with popularity distribution given by Zipf law with shape parameter γ = 0.7 for
the case with low popularity skewness, and γ = 1.2 for the other case. The searching distance of a user device to
establish D2D link is Rd = 75 m. The transmit power of a SBS and a user device are Ps = 100 mW and Pd = 2
mW, respectively. Backhaul power consumption at the SBS to handle a user request is Pb = 10Ps = 1 W. The
target SIR of successful transmissions is chosen as θ = 0 dB. We present numerical results for K ∈ [1, 9], in order
to compare the performance between caching at the user devices and caching at the SBSs for different user density
regimes.
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Fig. 6. Optimal caching probability vector q = [q1, · · · , qN ].

In Fig. 6, we plot the optimal caching probability qi of file fi, i ∈ [1, N ], obtained by solving the optimization
problem in (23). Comparing the results with γ = 1.2 and with γ = 0.7, we see that for lower γ, users tend to
cache more different files, because the user requests are more diverse due to the low popularity concentration level.
We observe the same trend when user density is higher, e.g., K = 3. This is reasonable because with higher user
density the probability to establish D2D communication is higher. Thus, more different files should be cached in
user devices in order to serve more requests by cache-assisted D2D transmission.

1) Cache Hit Probability: Fig. 7 shows the cache hit probability obtained with (28) and (29) for the case with
D2D caching and with SC caching, respectively. As expected, the cache hit probability for both cases are higher
with lower γ. Furthermore, we see that caching at the SBSs results in much higher cache hit probability than
caching at the mobile devices, as a result of the larger cache capacity.

2) Density of Cache-served Requests: The density of cache-served requests measures how many requests can
be successfully handled simultaneously using the local caches. From Fig. 8, we see that D2D caching outperforms
SC caching for higher γ, especially in the high user density regime. In the case with lower γ, the performance of
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SC caching is slightly better in the sparse user regime, whereas the performance of D2D caching outperforms SC
caching when the user density increases. The advantage of D2D caching is mainly due to two reasons:
• when the user density is high, the number of potential D2D transmitters are in general larger than the number

of SBSs, which allows to have more simultaneous cache-assisted transmission links;
• self-request of D2D caching gives opportunity to handle a large amount of requests made by the users when

the content popularity is highly concentrated.
3) Power Consumption: Fig. 9 plots the average power consumption per user request, showing that SC caching

is expectedly more energy efficient than the case with D2D caching, which is mainly because of the high cache hit
probability. Compared to the consumed power for fetching the content through the backhaul, the transmit power of
both user devices and SBSs are relatively low. Hence, the higher the probability to serve a user request locally, the
less power is needed. We also observe that the power consumption per user request with D2D caching decreases
with the user density. This is because the number of potential D2D transmitters within the discovery distance
of a user increases when the user density increases, thus giving higher probability to serve the user request by
cache-assisted D2D transmission.

Combining these results, we have the following takeaway messages:
• in networks with high user density, D2D caching gives the opportunity to serve more user requests simulta-
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neously through short-distance cache-assisted D2D communication;
• edge (SBSs) caching results in much higher cache hit probability because storage units at the SBSs have much

larger capacity than at the mobile devices. As a result, SC caching is also more energy efficient because less
power is consumed on average at the backhaul in order to download a file from the core network.

D. Conclusions

We compared the performance of D2D caching and small cell caching in a spatial wireless network. We provided
analytical expressions, corroborated by numerical results, for the cache hit probability, the density of cache-served
requests and the power consumption. The main takeaway message is that in wireless networks with high user
density, it is beneficial in terms of the spatial reuse of communication resources to perform caching at the mobile
devices and to benefit from proximal D2D communication. On the other hand, deploying large-capacity storage
units for caching at the edge (i.e. in small cells) is more advantageous in terms of energy efficiency, as a result of
the high cache hit probability in such case.

V. RESEARCH CHALLENGES FOR WIRELESS CACHING

In this chapter we gave mathematical evidence of the caching benefits for the operation of future wireless
networks. We complete the chapter by briefly summarizing the most challenging problems and the most interesting
future directions of research for caching in wireless networks. The interested reader is also referred to [41]–[44].

A. Modelling the requests in wireless networks

The standard model for performance analysis of web caching is the Independence Reference Model (IRM):
content m is requested according to an independent Poisson process with rate λpm, where pm refers to the content
popularity, modelled by a power law, i.e., pm ∝ m−α. This well-established model thrives due to its simplicity; it
only has two parameters, namely λ to control the rate of requests, and α to control the skew of the popularity.

The IRM assumes that the content popularity is static, which is of course not true. Breaking news, and the
episodes of TV series are examples of ephemeral content with rapidly changing popularity; they appear, they
become increasingly popular, and they gradually become unpopular again. Recent works [45], [46] propose novel
mathematical tools to model time-varying content popularity. The studies consider large samples of YouTube and
VoD applications and discover: content popularity is time-varying and in addition has a consistent effect on analyzing
the caching performance. In the inhomogeneous Poisson model proposed in [45] each content is associated to a
shot whose duration reflects the content lifespan and whose height denotes its instantaneous popularity. The model
is called the Shot Noise Model (SNM), mirroring the Poisson noise from electronics. While the shape of the pulse
is not important, the study [46] observes strong correlations between popularity and duration; apparently popular
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contents prosper longer. Finally, a class-based model [45] can conveniently capture spatio-temporal correlations
while allowing analytical tractability. Mobile users are profound downloaders of ephemeral content, thus it is
expected that a similar analysis for the case of wireless content will show stronger effects.

In fact, the concept of time-varying popularity is not entirely new to caching engineers. Currently, web caching
systems operate with dynamic eviction policies like Least-Recently-Used (LRU) and Least-Frequently-Used (LFU)
which combat time-varying content popularity in a heuristic manner. The performance of LRU under the SNM
model is analyzed in [47]. A recent study [48] analyzes the SNM model and gives the optimal policy for joint
caching and popularity estimation. The result shows that (LFU-like) frequency estimation becomes optimal for
contents with more than a few requests. Continuously estimating the popularity is more difficult in wireless systems
where the requests of the population are split over multiple caches and those that reach any given cache are less.
This development motivates novel caching techniques that employ learning methodologies to accurately track the
evolution of content popularity over time.

B. Coded caching for broadcast medium exploitation

The fundamental work of Maddah-Ali and Niesen [49] proposed the use of caching to improve the efficiency of
wireless transmissions in a cell. While traditional techniques cache entire contents at mobile terminals to eliminate
retransmissions of popular content, the coded caching technique stores coded combinations of content chunks. Then,
the base station can broadcast a coded sequence of messages so that all receivers in the group can combine it with the
cached chunks to decode the contents. This is shown to yield resource blocks equal to N(1−K/M)/(1+NK/M),
where N is the number of users, K the cache size, and M the catalog size. Hence, if the cacheable fraction of
the catalog K/M is kept fixed, then the required number of resource blocks does not increase with the number of
users N , this can be verified by taking the limit N →∞ whereby the above quantity converges to a constant. In
other words, in a scenario of a wireless base station with N users watching individual content, the result shows
that we may increase N indefinately while maintaining a fixed service quality.

This revolutionary idea has sprung a wealth of research efforts, such as device-to-device (D2D) networks [50],
[51], non-uniform content popularities [52], online caching policies [53], multi-servers [54], multi-library [55], and
combination with CSI [56]. From the implementation point of view, promising research directions include extensions
to capture system aspects such as (i) popularity skew, (ii) asynchronous requests, (iii) finite code lengths and (iv)
cache sizes that scale slower than M . Assuming that these practical challenges are resolved, caching for wireless
systems will become intertwined with physical layer techniques employed at the base station and the handheld.

C. Cooperative caching models

In the context of heterogeneous wireless networks, a user can connect in a variety of ways to the network in order
to obtain the requested content. For example, contemporary smart phones receive the signal of more than 10 base
stations simultaneously. In future densified cellular networks, the mobile will be connected to several femto-, pico-,
or nano- cells. The phenomenon of wireless multi-access opens a new horizon in caching exploitation [32]. Since a
user can retrieve the requested content from many network endpoints, neighbouring caches should collaborate and
avoid storing the same objects multiple times.

Most content placement optimizations of wireless caching boil down to a set cover problem in a bipartite graph
connecting the users to the reachable caches. Therefore, finding what contents to store at each cache is a difficult
problem even if the popularities are assumed known [32]. It is possible to relax the problem to convex optimization
by the use of distributed storage codes, where each cache stores coded combinations of contents [32], or by
time sharing placement of different contents. These ideas lead to several interesting algorithms in the literature of
multi-access caching [57]–[60].
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