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The delivery of content over the Internet is a multi-billion business involving dif-

ferent stakeholders: the content providers (CPs) which create and sell content to

users; the Content Distribution Networks (CDNs) that manage large-scale con-

tent cache servers, and the Internet Service Providers (ISPs) or mobile network

operators (MNOs) which are responsible for transferring the content to the end

request points. In the past, the economic interactions among these entities were

already complex; yet as content caches are being placed closer to end users fol-

lowing advances in Software-Defined Networking (SDN) and Network Function

Virtualization (NFV) technologies, these interactions are becoming even more

intertwined. Apart from sorting out the individual goals of each stakeholder,

and finding ways to foster mutually beneficial collaboration, the economic inter-

actions also include the interesting issue of the pricing of content caching and

bandwidth leasing.

In this chapter, we study the leasing of storage resources in a wireless cloud in-

frastructure. The owner of storage advertises fluctuating prices, and small-sized

content providers lease storage resources with the aim to improve the quality

of their offered service. Not only such a scenario includes a stochastic inventory

problem of meeting fluctuating video traffic demand with appropriate storage

investments, but further includes complicated caching interactions due to prox-

imity of user demand to available stored content, i.e., the closer is a user to a

stored content, the higher the offered quality. We begin by motivating the eco-

nomic ecosystem of elastic CDN service, including the arising business models

and the elasticity of the storage resource. After we survey related works regard-

ing economic studies of caching, we proceed by outlining the particularities of

the economic ecosystem in the content caching framework, explaining in detail

vertical and horizontal relations between various stakeholders in the ecosystem.

In the last section of this chapter, we provide an elastic cache dimensioning, con-

tent caching and request-SBS (small BS) association problem where a CP has a

limited average budget for operating costs of cache investment and a Telco CDN

operator provides an elastic cache lease service. We study two possible elastic so-

lutions for different scenarios using the Lyapunov drift-minus-benefit technique.

Finally, we quantify the benefit of the elastic cache lease over the static cache

lease, and provide guidelines for smart pricing.
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Table 1.1 List of abbreviations

Abbreviation Full name Abbreviation Full name

CP Content Provider CDN Content Delivery Network

CSP Cloud Service Provider ISP Internet Service Provider

MNO Mobile Network Operator Telco CDN CDN of Telecommunication Operator

BS Base Station NFV Network Function Virtualization

SDN Software Defined Networking SBS Small Base Station

MBS Macro Base Station D2D Device-to-Device

QoS Quality of Service CDNaaS CDN as-a-Service

1.1 Introduction

As demand for mobile data has been increasing exponentially in recent years [1],

and Internet pipes are becoming increasingly congested by video traffic, a great

deal of research has been focusing on content caching infrastructures. Since most

efforts were focused on improving the efficiency of caching, the economic aspects

of the operation of these large systems have been largely overlooked. Fig. 1.1

depicts just how different is the content delivery process from an economic per-

spective of the wireless edge caching. From a technical standpoint, the caching

decisions at every edge server are tuned to maximize the caching hit ratio and/or

reduce the end-to-end delay. In contrast, from an economic point of view, key

players (stakeholders) such as content providers (CPs), Internet operators, and

users, all have different goals, which results in delicate tradeoffs involving tuning

the caches, pricing of caching service, fairness, and collaboration in traffic steer-

ing. The focus of this chapter is precisely to highlight these tradeoffs as they

arise in the developing ecosystem of network virtualization, where storage will

become an important commodity.

Although memory is cheap with respect to other resources [2], the total amount

of installed memory in a mobile network can be significant [3]. Additionally,

the edge cloud resources (e.g., such as those offered by Amazon Web Service

(AWS)) are typically more expensive than those in core cloud data centers.

For example, the service price of AWS CloudFront for transferring files to the

edge servers is $0.085/GB whereas that of AWS Simple Storage Service (S3) to

transfer files to the cloud data center is $0.023/GB by 10TB [4], which implies

that the rental price of the edge cache storage is approximately four times more

expensive than that of cloud storage. On the other hand, caching at the edge

reduces backhaul utilization, known to be the performance bottleneck of dense

wireless deployments. In particular, due to memory commoditization and its

necessity for transferring video traffic, a market of memory is envisaged in the
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Figure 1.1 Technical and economic perspectives of wireless edge caching: From the
economic point of view, vertical stakeholders represent different types of entities such
as users, CPs, ISPs, CDN providers and so on, and horizontal stakeholders represent
the same type of entities, e.g., the same type of users or the same type of CPs. In
general, the issues between the vertical stakeholders are pricing for the caching/
networking service and collaboration between them whereas the issues between the
horizontal stakeholders are making service fairness for the same service price.

near future. All the above suggest that decisions about installing/leasing wireless

caches mandate a careful cost analysis [5] and respective pricing.

When it comes to moving massive amounts of video within the Internet, a

number of stakeholders are involved. For example, the CPs (such as YouTube,

Netflix, Facebook, and more recently Amazon) are responsible for producing

content and selling content services, the telecom providers (Telcos) are respon-

sible for delivering Internet traffic, and the users are typical consumers of the

video services. However, in the evolving ecosystem of caching we encounter some

more complex roles [6]. Companies such as Akamai and Limelite (called CDN

providers) offer CDN as a service (CDNaaS), i.e., they rent their private net-

works and storages to facilitate the transfer of videos of clients. Telcos often

choose to build their own CDN (known as Telco CDN1) in order to avoid buying

CDN service. On the other hand, since CPs own the encryption rights to the

video content, many times they install their own caching boxes within the Telco

transport networks. Users may produce their own content (e.g. Youtube or Face-

book) or choose to circulate the videos themselves (e.g. peer-to-peer networks).

Caching plays a dominant role gluing together all these stakeholders, and gener-

ating multiple different business models. Perhaps the most traditional business

model is the one where the Telco manages the caches and sells the CDN service

1Telco CDN = the CDN network of a telecommunication operator.
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to the CPs. However, in this chapter, we are interested in a fresh and more inter-

esting business model, that of elastic CDN service. In this business model, there

are three stakeholders 1) the storage infrastructure owner (a prominent example

of which is Amazon AWS ElastiCache [4]) or a Telco CDN, 2) a small-sized CP

(which can not afford a private CDN), and 3) the users that generate the video

demand. The CP will purchase storage on demand, and serve the requesting

users. The service is called elastic because the storage can be leased in different

amounts from hour to hour, allowing the CP to adjust the cache sizes accord-

ing to the real-time video traffic characteristics. This provides unprecedented

levels of flexibility and economization but complicates the optimization and the

business interactions, which are the focal point of this chapter.

Resource elasticity and flexibility is dogmatized in modern networks. Enabled

by virtualization technologies [7], cloud companies offer elastic-anything, i.e.,

AWS provides a variety of options for flexible services such as Amazon EC2

Auto Scaling, Elastic Load Balancing, Elastic File System, ElastiCache, etc [4].

Similarly, Akamai recently proposed the idea of elastic CDN (or cloud CDN)

where storage resources are dynamically tuned to realize virtual caches [8, 9].

The arising elastic CDN service, however, not only aligns with the moderniza-

tion trend, but provides two significant tangible advantages: (i) it allows to

meet spatio-temporal demand fluctuations by installing caches where and when

needed (just-in-time caching), and (ii) it allows small-size CPs (such as Pinterest,

Snapchat, and Tumbler) to reach the market at small entry costs. Traditional

CDN pricing does reflect storage usage costs or small-scale traffic fluctuations,

but is rather based on a flat-rate service price across large geographical regions

(e.g., continents) arranged in long-term contracts (e.g., few months to years) that

reflect the traffic peaks [10]. Therefore, small-sized CPs, faced with bursty and

unpredictable demand, they must either invest in building a large private CDN,

or buy such flat contracts, both of which create a barrier-to-entry the content

business. In contrast, the idea of elastic CDN service allows them to exploit op-

portunism and improve content delivery with a flexible pricing scheme. Indeed

the first market solutions such as Akamai Aura [11] and Huawei uCDN [12] al-

low dynamic cache scaling and fine-grained pay-as-you-go service [13]. However,

due to the complicated nature of caching resource allocation and performance,

pricing elastic CDN service seems to be a very complicated engineering-oriented

task. In this chapter, we propose a mathematical model towards addressing this

challenge.

1.1.1 Summary of this chapter

In Section 1.2 of this chapter, we survey past works related to caching eco-

nomics. Then in Section 1.3, we explain the complex interactions among various

stakeholders that make up the network infrastructure for caching services and

specifically categorize them into vertical and horizontal stakeholders. We will
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also explain the differences between core in-network caching and wireless edge

caching, as they affect the economic perspective.

In Section 1.4, we study the underlying techno-economic problem of the elastic

wireless caching and provide possible solutions how to invest an available budget

in cache space in order to match spatio-temporal fluctuations of content demand

and storage price. Specifically, we consider joint dynamic cache rental, content

placement, and request-cache association in a wireless scenario where the Telco

CDN operator offers just-in-time CDN service to the CP. To solve this chal-

lenging control problem without knowledge of distant future content popularity

and market prices, a Lyapunov drift-minus-benefit technique, which results in

an instantaneous optimization problem which must be solved in a slot-by-slot

fashion. We provide solutions for both non-overlapping caching coverage (simpler

case) and the general overlapping case. We show that with such a weaponry of

stochastic control, the system operator can exploit the flexibility of elastic CDN

to improve the system benefits two times over the traditional static CDN infras-

tructures. The above in-depth techno-economic analysis provides a solid ground

for embarking on sophisticated pricing schemes that can be mutually beneficial

for all stakeholders in this ecosystem.

1.2 Background

Before we delve deeper into the economics of wireless edge caching, we discuss

how existing literature is shaped on the topics of wireless edge caching and

techno-economical caching policies, and which are the prevailing business models

for content caching today.

Wireless edge caching in heterogeneous networks. Since the seminal

work on femtocaching [14] which optimizes file caching in SBSs with capacity-

limited backhaul links, there have been several wireless edge caching studies

[15, 16, 17, 18]. Combes et al. [15] showed that device-to-device communica-

tions with a help of caching in the mobile devices make a scaling law of per-user

throughput regardless of the number of users. In addition, content caching/cache

dimensioning was optimized in conjunction with advanced wireless technologies

such as CoMP transmission [18]. Moreover, to capture the large-scale wireless

caching system, Blaszczyszyn et al. [19] used stochastic geometry, which mod-

eled the location of users and base stations (BSs) with a Poisson point process.

Caching in wireless edge nodes such as small BSs (SBSs) or mobile devices has

different features with caching in wired core network: the file demand per edge

node (i) has a smaller volume, and (ii) varies quickly due to the user mobility.

Hence, it is more difficult to design optimal caching policies for such systems.

The above works addressed this problem when the caches are pre-dimensioned,

however, re-formulating this problem with the ability to re-size the caches is

challenging.
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Techno-economical content caching and delivery techniques. There

are extensive studies on CDN server placement problem considering the cost of

the cache memory [20, 21, 22, 23]. For example, Bektas et al. [20] formulated

the joint problem of server deployment, file placement, and data transfer cost

minimization, and solved it using Benders’ decomposition, while Li et al. [22]

used dynamic programming. Unlike server placement problems, Laoutaris et al.

[23] formulated a storage budget allocation problem which aims to minimize

the sum content retrieving costs in a hierarchical file distributed system, and

proposed heuristic solutions.

Past works have proposed cooperative mechanisms between ISP, CDN oper-

ator, CP and end users as their economic relations are tightly intertwined with

respect to the business models. Li et al. [24] studied how benefits from collabo-

ration, e.g., joint routing and content caching are divided between entities using

Nash bargaining solution. In addition, Poularakis et al. [25] proposed incentive-

based collaboration among devices to improve caching performance via D2D

(Device-to-Device) communications. More recently, various economic models of

content caching framework have been proposed. For example, Krolikowski et al.

[26] modeled an economic scenario in which Mobile Network Operator (MNO)

leases its edge cache to CP to maximize cache hit ratio. Based on this models,

they optimized CP’s decision conditioned on the user association policy. The

work in this chapter is the state-of-the-art approach to address economic aspects

in the elastic wireless CDN environment.

Business models for content caching. 1) Akamai Intelligent Platform: Aka-

mai operates one of the largest CDNs offering 20% of today’s Internet traffic.

They have the 0.2 million caching servers distributed over the world offering

1-10 msec access to content around the world. In addition, Akamai and Jupiter

recently proposed the idea of cloud or elastic CDN where storage resources are

dynamically adapted to meet demand [9]. This architecture combines storage de-

ployment with caching decisions; hence it makes imperative the efficient design

of joint storage allocation and content caching policies and also gives rise to new

business models for content caching. 2) Google Global Cache: The Google Global

Cache (GCC) system consists of caches installed at the ISP premises. The GCC’s

goal is to reduce local network bandwidth costs by providing local requests for

YouTube contents [27]. The importance of GCC motivates the study of peering

relations between content providers and network operators and the design of

pricing models for leasing in-network caching capacity at network operators. 3)

Netflix Open Connect: The Netflix CDN is partially deployed within ISPs [28].

However, Netflix video caching faces different challenges from YouTube, mainly

because its catalog is much smaller and the file popularity is more predictable. 4)

Amazon AWS: Some parts of AWS are the Amazon CloudFront, a virtual CDN

that leverages the cloud storage to provide CDN services. The price to store 1TB

is $20 [4] and Amazon allows one to dynamically rent caching and bandwidth

resources by changing the storage capacity every one hour. 5) Cedexis and Con-

viva: Until recently, major CPs contracted with a single CDN, such as Akamai,
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Level 3 or Amazon CloudFront or deployed their own CDN, such as Google and

Netflix. The recent rise of CDN management, namely broker services, such as

Cedexis [29] or Conviva [30] has allowed the CP to contract with multiple CDNs

for easier delivery of content [10].

1.3 Economic Ecosystems for Wireless Edge Caching

In this section, we study an economic ecosystem consisting of various vertical

and horizontal stakeholders and features of wireless edge caching compared to

in-network caching.

1.3.1 Wireless Edge Caching versus In-Network Caching

First, we study the differences between the classical in-network caching at the

core versus the wireless edge caching as they affect the economic perspective.

Their differences can be summarized as follows.

• The population of users reaching a cache of a BS (or edge server) is signif-

icantly smaller than that of the core network cache; correspondingly, the

number of requests per unit time is also smaller, and thus timely collection

of content statistics is challenging.

• Contrary to data centers, edge servers are restricted in size and have limited

storage resources; hence the cost for leasing one unit of edge storage is

higher.

• Wireless edge caching systems are more dynamic in nature, due to user

mobility, wireless channel state variations, and multi-access coverage.

The above raise the following technical challenges particular to wireless edge

caching: (a) popularity prediction is difficult, and hence caching efficiency might

be compromised, especially on rapidly (second-level) fluctuating popularities,

(b) the locality of storage is of high importance, and instantiating the cache

at the right geographical point might allow to reach suffering users and yield a

significant improvement on perceived quality, (c) storage investment can reduce

backhaul link utilization (the main limitation of dense wireless architectures) but

(d) the costs of leasing edge storage is very high, hence deciding an online cache

sizing that addresses all these challenges is very important.

To overcome these challenges, a collaboration among stakeholders is required.

Since Telcos do not have access to accurate popularity statistics, CPs must collect

data at aggregate locations and offer this information to the cache management.

Another proposal observes that end users often have resilient needs and can

be satisfied with similar content using an appropriate incentive mechanism, in

which case the system can increase the Soft Cache hits [31], i.e. the times user

is satisfied without the delivery of the requested content. This is consistent with

the recently proposed idea, which leverages recommendation systems embedded
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Figure 1.2 Different economic scenarios for different locations of caching files. (a): File
caching at the core CDN servers; (b): File caching at small cell base stations; (c):
Proactive file caching at the user device and device-to-device (D2D) content delivery.

in multiple CDNs (e.g., YouTube) in order to tailor user demand towards already

cached content [32]. Finally, an efficient edge cache management is possible by

dynamically investing budget to the edge caches with respect to dynamic network

environments including content demand, wireless channel states, and pricing for

wireless bandwidth.

1.3.2 Economic Ecosystems for Wireless Edge Caching

As the caching ecosystem becomes more complex, it is essential to adjust the

interests of the key stakeholders to alleviate market inefficiencies. In this sub-

section, we study economic interactions among various stakeholders, classifying

them into vertical and horizontal stakeholders.

Vertical stakeholder. These are stakeholders that perform different duties

inside the system and naturally have different individual goals, e.g., users, CPs,

Telcos, and CDN providers. These stakeholders need additional efforts to reach

an agreement on the globally optimal caching strategy. First, we must check how

the collaboration between them is actually mutually beneficial and then how the

benefits can be distributed. An example of vertical collaboration is when the

CPs offer popularity statistics data to Telcos, or when the users offer content

recommendations to CDN providers.

An important tool for effective collaboration is the pricing mechanisms. Exam-

ples of existing pricing mechanism include payments from CPs to CDN providers

for high quality content delivery (e.g. from Facebook to Akamai), from CDN

providers to ISPs for bandwidth, from CPs to cloud infrastructure owners for

in-network storage, from users to ISPs for bandwidth and in-network storage,

and from users to CPs and ISPs for subscription of the services as shown in Fig.

1.1(b). On the other hand, there are cases where payments are not needed, e.g.,

in case of Telco CDN where ISPs and MNOs directly manage cache memory in

core network or edge servers.2

Fig. 1.2 shows various economic scenarios for different locations of cached files.

2Indeed, from the perspective of a CP, traditional CDN and telco CDN are not competitive,

but complementary services. A telco CDN has the advantage of proximity to end users, but
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Specifically, Fig. 1.2(a) shows traditional economic relations among a CP, a CDN

operator, an ISP and end users in core in-network caching. In this cache scenario,

the CP makes a payment to the CDN operator to cache their files and determines

prices to provide services to end users. Moreover, the ISP can be an interme-

diator for content delivery between CDN operator and end users. However, the

collaboration between CDN and ISP, e.g., Telco CDN would be imperative in

the wireless edge caching scenario since edge caching and wireless routing, e.g.,

user scheduling must be jointly designed [14]. The collaboration between CP

and Telco CDN can be considered for D2D caching scenario since the incentives

may be also offered from the federation of CP and Telco CDN to users in order

to assist the network. For example, Tadrous et al. [33] discussed the problem

of incentivizing users to exchange content by leveraging D2D communications

at the off-peak time through optimized discounts. In this framework, users can

submit their content requests in advance with a discounted price so as to assist

the network in serving them proactively.

Horizontal stakeholders. Horizontal stakeholders are entities with similar

goals, that compete in a common market. In this case, the notion of fairness

becomes more important. When multiple CPs use the same CDN service, the

CPs would expect the same caching hit performance for the same CDN service

price. Since this metric is difficult to be achieved by the CDN provider, an

alternative is to use an intelligent pricing methodology. For example, Gourdin

et al. [34] modeled the economic interaction between multiple CPs and a single

CDN operator with Stackelberg game, where the leader is the CDN provider

and the follower is the CPs, and investigated an impact of the CDN economic

behavior on the quality perceived by users and on the fairness among CPs when

the CDN charges them different prices.

Prior work [35] proposed a cooperation mechanism with multiple CDN providers,

based on the Nash Bargaining solution. For example, Twitter splits its content

delivery across three separate CDNs. Such MultiCDN approach can be realized

thanks to the virtualization and sharing of storage resources, e.g., different CDNs

can jointly deploy and manage edge servers. Further, it was shown that the co-

operation benefits were dispersed proportionally to the performance that each

entity would have achieved under non-cooperation. Moreover, CPs are shifting

delivery from a single CDN to multiple CDNs through the use of a content broker.

Mukerjee et al. [10] addressed management issues among multiple CDN opera-

tors. The recent rise of CDN management services (brokers), such as Cedexis,

Conviva or NicePeopleAtWork, and CDN federation techniques [36] has made

it easier for CPs to enlist multiple CDNs to deliver content. They argue that

CDN operator-broker collaboration is easier to achieve, as there are significantly

fewer CDNs than ISPs, and business relationships are already more attuned to

typically this is limited to specific geographic locations. In contrast, traditional CDN players

(e.g., Akamai) manage CDN servers globally.
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collaboration (CDNs and brokers both directly optimize content delivery under

contract with CPs).

In this section, we studied the classification of stakeholders and their roles in

the caching ecosystem and the features of wireless edge caching. In the next sec-

tion, we study a specific techno-economical problem where three vertical stake-

holders, i.e., a CP, a Telco CDN operator and users coexist in the wireless edge

caching scenario.

1.4 Elastic Wireless Cache Lease, Content Caching and Routing

With elastic CDNs, small-scale CPs without their own CDN servers can rent

cache space as needed at different cloud locations from ISPs with edge servers

in order to enhance their offered quality of service (QoS). This section discusses

key challenges in this context, namely how to invest an available budget in cache

space in order to match spatio-temporal fluctuations of file demand and storage

prices. Specifically, we consider jointly dynamic cache rental, file placement, and

request-cache association in wireless scenarios in order to provide just-in-time

CDN services. The goal is to maximize the benefits of average download de-

lay obtained by the rented caches while ensuring that the time-average rental

cost is less than a fixed budget. We leverage the Lyapunov drift-minus-benefit

technique to transform our infinite horizon problem into hour-by-hour subprob-

lems which can be solved without knowledge of distant future file popularity and

transmission rates. We propose efficient solutions for both non-overlapping and

overlapping small cells scenarios, respectively.

1.4.1 Scenario

A large portion of today’s Internet traffic is handled by CDNs owned by large con-

tent companies like Google and Netflix. Such deployments require a significant-

often prohibitive for newcomers-investment for the cache servers and the asso-

ciated control systems. For a smaller size CP such as Pinterest, Tumbler, and

Snapchat, an alternative way to exploit the CDN servers is to use a cache rental

service from a CDN provider such as Akamai [18] or Amazon AWS [4]. How-

ever, this can be very costly and impractical for some CPs since the leases are

on the long-term basis, prices are fixed and catalog-dependent and the content

placement decisions are made by the CDN provider.

As we mentioned in the introduction, disruptive solutions known as content

delivery network as-a-service (CDNaaS) or elastic CDN (eCDN) [9] have recently

emerged. Thus, the eCDNs enable a novel business model, where small CPs can

dynamically rent storage and instantiate virtual CDNs to meet customer demand

just-in-time and space, i.e., whenever and wherever caching is needed. Clearly,

eCDNs can benefit CPs with tight monetary budgets, volatile demand and/or
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seeking fine-grained caching control over their storage management and caching

decisions.

At the same time, this model raises technical and economic questions. In par-

ticular, the CP must decide (i) how much storage to lease at each location in

order to meet user demand and (ii) which content items (files) to cache at each

of these storage reservoirs. Furthermore, these decisions need to be updated reg-

ularly, often on a per-hour basis, in order to accommodate the time-varying

nature of the content demand. At each round, the CP encounters an investment

dilemma: a larger cache lease will improve service quality but will also increase

expenditure. With a given operational expenditure budget, the investment deci-

sions are inherently coupled across different rounds. Overspending in one round

improves the current performance but restraints subsequent decisions and limits

future opportunities. The goal of a small CP is to optimize the storage manage-

ment and caching decisions that the CP needs to make when leasing storage from

an eCDN system.

We study the more challenging but increasingly relevant scenario where the

eCDN is owned by a MNO and the storage resources are at small cell base stations

(SBSs).3 We consider a wireless edge caching scenario such as Fig. 1.2(b). In

this scenario, the end users subscribe a content service from a CP and make

a payment for the network usage to a Telco CDN operator. The Telco CDN

operator provides both edge caching services and data delivery services (from

core data centers to the edge servers) to the CP and mobile internet service to

the end users. The end users are supposed to subscribe to the content service

and use the mobile internet service with a fixed price for the constant duration,

say one month. In addition, the Telco CDN operator decides the price for data

delivery and edge caching service every hour based on the electricity price or

network environments.

In the eCDN mobile network, a geographical area is covered by several SBSs

with possibly overlapping coverage. The SBSs have caches which can be dynami-

cally rented by the CP. When a file is served from a leased cache, there is a delay

benefit as opposed to being served from a remote CP server, which is attributed

to the proximity of the cache. Therefore, the CP can invest in cache space in

different time slots and locations, decides which files to place in the rented space,

and then enjoys a service delay benefit for the requests that were served from the

caches. The business model in this section is that the CP gives an average cache

rental budget to the mobile operator where all operations including cache scaling,

content caching and wireless routing decisions are entrusted to the Telco CDN

operator. It would be beneficial to both of the CP and the Telco CDN operator

by jointly manipulating cache scaling, content caching and wireless routing since

it enables to reduce backhaul congestions as well as enhances the QoS for end

users. Then, the objective is to select investment, placement, and request asso-

3For example, AT&T has envisioned using their own CDN, namely Telco CDN which

integrates content delivery with traffic engineering [37].
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Figure 1.3 An example of the elastic policy and the static policy in a cache rental
system. For the simplicity of the model, the only experienced wireless delay is a
time-varying parameter in this model. Note that the association solution for static
policy is fair time-sharing between BS 1 and BS 2 for both time slots since
time-average delays for both BSs are the same.

ciation in order to minimize the average service delay for a given time-average

budget.

Apart from this model, we can also consider different types of business models.

For example, the CP invests its budget to lease the edge cache capacity and makes

a decision of file caching itself while file routing to different BSs can be controlled

by the Telco CDN operator [26]. This model also makes sense in a case that the

information of video files must be kept secure from the Telco CDN operator, yet

the CP cannot benefit from the joint optimization of file routing and file caching.

1.4.2 Motivating Example of Elastic Cache Lease

Fig. 1.3 shows an example of the elastic cache lease, file caching and area-BS

association policy and the static policy of them in a cache rental system.4 In this

example, we assume a scenario that a CP provides content service for users in area

1 and a Telco CDN operator has two edge servers attached to each BS to provide

cache memory space lease service to the CP. Moreover, there are backhaul delay

db,n which denotes the experienced delay to transfer/receive files between the

CP and each BS and wireless delay dw,n which denotes the experienced delay to

transmit files from each BS to the end-users in area 1, respectively where n ∈ 1, 2

denotes the BS index. In this example, we consider following dynamic states, i.e.,

states change over time slots and static states, i.e., states do not change over time

slots: (i) dynamic states: dw,n for all BSs over time slots, (ii) static states: db,n
for all BSs and the number of file requests for all files f1, f2. We assume that

4To simplify, we do not consider the units of all parameters.
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db,n for both BSs are 2 and file request arrivals for both files are 2 every time

slot. At time slot 1, the CP which adopts the elastic policy is likely to lease the

memory space at BS1 for all files and all requests would be associated with BS1

since the wireless delay from BS1 to area 1 is smaller than that from BS2 to

area 1. At time slot 2, the CP which adopts the elastic policy is likely to lease

the memory space at BS 2 to cache all files and all requests would be associated

with BS2 since the wireless delay from BS2 to area 1 is smaller than that from

BS1 to area 1. However, the CP which adopts the static policy is likely to lease

both memory spaces at BS1 and BS2 to cache f1 at BS 1 and cache f2 at BS

2, respectively and use fair time-sharing association between two BSs since the

time-average wireless delays are the same from both BSs to area 1.

Then, we evaluate the elastic policy and the static policy using three metrics

as follows: (i) total cache lease costs, (ii) total backhaul bandwidth usage costs,

and (iii) total end-to-end delays (from the closest location which caches the

corresponding file to area 1). First, the total cache lease costs of both policies

are the same since the memory space to cache two files every time slot is leased by

the Telco CDN operator every time slot. Second, the total backhaul bandwidth

usage cost for the elastic policy is 0 and for the static policy is 4R where R

denotes the bandwidth usage price to transmit a file over a backhaul link. The

cost for the static policy comes from the fact that one request of each file must

be transmitted from the original content servers via BS1 or BS 2 in both time

slots. Finally, the end-to-end delay of the elastic policy is 2 (2 file requests for

file f1) +2 (2 file requests for file f2) = 4 at time slot 1 and 2+2 = 4 at time

slot 2 and that of the static policy is 1 (f1 from BS1 caching) + 3 (f2 from the

CP to area 1 via BS1)+ 2 (f2 from BS2 caching) + 4 (f1 from the CP to area 1

via BS2) = 10 at time slot 1 and 1 (f2 from BS2 caching) + 3 (f1 from the CP

to area 1 via BS2) + 2 (f1 from BS1 caching) + 4 (f2 from BS2 caching) = 10

at time slot 2, respectively, i.e., the total end-to-end delay of the elastic policy is

8 and that of the static policy is 20, respectively. In summary, the elastic policy

is able to attain the better QoS of end users with the same edge memory lease

cost and less backhaul usage cost than the static policy.5

1.4.3 System Model

The cache rental system consists of a macro BS (MBS) (we denote it using letter

s) and several SBSs collected in set J . All stations together J ∪ {s} provide

coverage to a given geographical area, cf. Fig. 1.4. Specifically, we partition the

geographical area into I non-overlapping subareas and use Ji ⊆ J to denote

the subset of SBSs that are reachable by subarea i ∈ I. The MBS is always

reachable. Each SBS offers storage for lease, which can be used to cache files and

facilitate their delivery.

5In this example, we assume that file popularity can be exactly predicted. There exist many

studies which address the prediction of the file popularity using machine learning techniques

such as the one in [38] and references therein.
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Figure 1.4 Overview of cache rental, file caching and association in wireless elastic
CDNs.

Table 1.2 Summary of the notations

Notation Definition Notation Definition

i ∈ I area index dis(t) average delay for serving area i by remote servers

j ∈ J SBS index dij(t) average delay for serving area i by SBS j

s MBS index hj(t) price to lease cache storage per unit bit

f ∈ F file index λi,f (t) demand profile

Bavg average budget constraint yj(t) leased cache space at SBS j

t hour index (time slot) zj,f (t) file caching indicator

xij,f (t) association probability

Time is slotted in hours t = 0, 1, . . . . For each file f in a catalog F , we denote

with λi,f (t) the traffic demand emanating from subarea i in slot t. We assume

that λi,f (t) is an i.i.d. process with finite mean and variance.6 The traffic demand

reflects the file popularity in time and space, and therefore it will be crucial to

adjust caching decisions over time.

When a user requests a file, there is an associated download delay dij(t), j ∈
Ji∪{s}, which depends on (i) the subarea i, where the user is located, and (ii) the

station j ∈ J ∪{s} from which the file is retrieved, which together determine the

communication path used; delay is associated to a path for various reasons such

as wireless interference, congestion, propagation time, etc., which are all path-

specific. When the file is retrieved from the MBS, a remote server is contacted

6It is possible to extend the model to Markovian arrivals using the framework of [39].
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to obtain the file (Fig. 1.4), and although this ensures delivery of every file–and

hence feasibility of our mathematical problem–the corresponding download delay

dis(t) is generally large. To improve QoS, the file can be retrieved from a nearby

SBS cache, instead of the MBS.

To this end, SBS j ∈ J leases storage for purposes of caching. The storage is

leased at a fluctuating price hj(t) per unit, which is extrinsic to our system. The

price changes over time following electricity price fluctuations [40] and a spot

market of storage, where storage owners sell their left-overs, and hence the price

is affected by temporal ebbs and flows of traffic and storage demand.

We introduce the investment variables yj(t) to denote the amount of SBS

storage that is leased for caching operations in slot t. The investment decisions

are subject to an economic constraint. Specifically, we have in mind an average

budget Bavg, which must be satisfied over a long horizon. On one hand, cloud

service providers, like Amazon AWS, provide storage lease (called S3) and back-

haul transmission (called CloudFront) at prices that are adapted every hour,

which motivates investment decisions on hourly-basis. On the other hand, CPs

must meet operational expenditure (OpEx) billing targets only at a much larger

time scale, e.g., over a month. With these particularities in mind, we introduce

our time-average budget constraint, expressed as follows:

lim
T→∞

1

T

T−1∑
t=0

∑
j∈J

yj(t)hj(t) ≤ Bavg, (billing constraint) (1.1)

where the term
∑
j∈J yj(t)hj(t) represents the total investment in slot t, the

LHS is the time average investment, and Bavg is the available average budget in

dollars per hour to be spent on storage leasing.

To determine the average delay experienced within an hour, we must describe

carefully how each file is served. For this, we introduce two more sets of decision

variables: (i) file placement variable zj,f (t) ∈ {0, 1} takes value 1 iff file f is

cached at SBS j in slot t, and (ii) demand association variable xij,f (t) ∈ [0, 1]

denotes the fraction of location i traffic demand for file f that is served by SBS

j, again in slot t. We can now express the hourly end-to-end delay benefit from

file caching for the subarea i and SBS j as:

Dij(x(t), z(t);λ(t),d(t)) = (dis(t)−dij(t))
∑
f∈F

xij,f (t)zj,f (t)λi,f (t). (1.2)

Observe that the delay depends on the fraction of traffic served at this location

xij,f (t), on whether the file is actually cached here zj,f (t), and finally on the

volume of demand λi,f (t). The total delay benefit in slot t is:

gt(x(t), z(t);λ(t),d(t))=
∑
i∈I

∑
j∈Ji

Dij(x(t), z(t);λ(t),d(t)). (1.3)

Below we will drop (λ(t),d(t)) from the argument of g, though the dependence

on these parameters remains implied. We note that the total delay and the total

delay benefit add up to a constant term (equal to the total delay without caching)
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and hence minimizing total delay is equivalent to maximizing total delay benefit.

Below, we focus on the latter.

A number of constraints must be satisfied at each time slot. Specifically, the

entire demand emanating from each subarea must be served (by SBSs or MBS)∑
j∈Ji∪{s}

xij,f (t) = 1, ∀i, f, t, (service constraint) (1.4)

and the file placement is limited by the available (leased) storage:∑
f∈F

zj,f (t) ≤ yj(t)/b, ∀ j, t, (storage space constraint) (1.5)

where b is the size of each file; we assume that b is the same for all files for

simplicity, but we can model a heterogeneous file size scenario by dividing the

different size of files into same size chunks. To facilitate reading, we summarize

the notations in Table 1.2.

1.4.4 Problem Formulation

The system is operated with an elastic CDN strategy, which at slot t maps the

current state of the system to a decision tuple (xij,f (t), yj(t), zj,f (t)). An elastic

CDN strategy is called feasible if it satisfies the billing constraint (1.1) and

the instantaneous constraints of service (1.4) and caching space (1.5) explained

above. We would like to address the mobile operator question “what is the feasible

elastic CDN strategy that maximizes average delay benefit?” This question can

be addressed by the following control problem:

(P) : max
x,y,z

lim
T→∞

1

T

T−1∑
t=0

gt(x(t), z(t)), (1.6)

s.t. lim
T→∞

1

T

T−1∑
t=0

∑
j∈J

yj(t)hj(t) ≤ Bavg,∑
j∈Ji

xij,f (t) = 1,∀i, f, t,
∑
f∈F

zj,f (t) ≤ yj(t)/b,∀j, t.

Note that this control problem is challenging for the following reasons:

• Crucial factors for the objective such as future traffic demand λi,f (t) and

future delay gains dis(t) − dij(t) are unknown at the time the investment

decisions yj(τ) are taken (τ < t),

• Due to the time average billing constraint, a large investment yj(τ) reduces

the available budget in future slots t > τ , which can be problematic in

combination with the unknown future costs hj(t), delays dij(t), dis(t) and

traffic demand λi,f (t).
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1.4.5 Lyapunov-based Elastic CDN Strategy

Since problem (P) involves the challenging time-average constraint (1.1), a

promising approach is to couple the fate of this constraint with an evolving con-

trollable counter. To this end, we introduce a virtual queue (or counter) whose

backlog is updated by

QB(t+ 1) =
[
QB(t) +

∑
j∈J

yj(t)hj(t)−Bavg
]+
. (1.7)

Prior work [41] shows that if weak stability conditions hold for the virtual

queue, i.e.,

lim
T→∞

1

T

T−1∑
t=0

QB(t) <∞, (1.8)

then constraint (1.1) is asymptotically satisfied, in the sense that its residual

tends to zero as T →∞. Intuitively, the backlog QB(t) estimates the total excess

budget spent in the previous time slots (instantaneous residual), and therefore

QB(t) is valuable information for deciding how to invest at slot t. Then, let us fo-

cus on slot t. The decision maker is aware of 1) the mean traffic demand profile for

the next hour [λi,f (t)]i,f , which in practice is achieved by measurements and use

of machine learning methods, cf. [38], 2) the delay profile realizations [dij(t)]i,j
available by measurements, and the readily available 3) prices [hj(t)]j and 4) vir-

tual queue length QB(t), while file size b is assumed known. Therefore, the elas-

tic CDN strategy is applied on the state ([λi,f (t)]i,f , [dij(t)]i,j , [hj(t)]j , QB(t)).

To design a strategy that solves (P) we employ a Lyapunov drift-minus-benefit

framework as follows.

We first define the quadratic Lyapunov function and arising drift as follows:

L(t) ,
1

2
QB(t)2, (1.9)

∆(t) , E{L(t+ 1)− L(t)|QB(t)}. (1.10)

Note that the Lyapunov drift ∆(t) depends on slot t decision (y(t),x(t), z(t))

implicitly via the update of QB(t + 1), and provides information about the ex-

pected improvement of constraint satisfaction when taking a specific decision; a

decision with small cost
∑
j∈J yj(t)hj(t) will tend to reduce the length QB(t+1),

and therefore make the drift negative. Since we are also interested in maximiz-

ing the time average of gt using instantaneously feasible decisions (satisfying

demand and storage space constraints), we next introduce the Lyapunov drift-

minus-benefit function (DMB) which balances the drift and the instantaneously

obtained delay benefit:

DMB(x(t), z(t)) = ∆(t)− V E{gt(x(t), z(t))|Q(t)}, (1.11)

where V is a constant parameter to balance the tradeoff between two conflicting

objectives, (i) reducing the billing constraint residual and (ii) increasing the delay

benefit.
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Applying the queue update equation (1.7) and lemma 4.3 from [42], we obtain

under any possible decision ([yj(t)]j , [xij,f (t)]ijf , [zj,f (t)]jf ):

DMB(x(t), z(t)) ≤ P − V E{gt(x(t), z(t))|QB(t)}

−E
{(
Bavg −

∑
j∈J

yj(t)hj(t)
)
QB(t)|QB(t)

}
, (1.12)

where P = (B2
avg + |J |y2maxh2max)/2 is a positive constant, and ymax and hmax

denote the maximum storage that can be leased at any SBS during an hour, and

the maximum price respectively. Neely [39] showed that we can uncover optimal

decisions by minimizing the RHS of (1.12).

We propose the elastic CDN strategy (SBSD) which at slot t takes actions

(x(t),y(t), z(t)) = (x∗,y∗, z∗), where

(x∗,y∗z∗) ∈ arg maxx,y,zV gt(x, z)−
∑
j∈J

QB(t)yjhj(t), (1.13)

s.t.
∑
j∈Ji

xij,f = 1,∀i, f, t,
∑
f∈F

zj,f ≤ yj/b,∀j, t.

The first straightforward result is that SBSD is a feasible elastic CDN policy.

First, the instantaneous constraints of service (1.4) and storage space (1.5) are

automatically satisfied at each slot by the design of the policy. Then, we may

observe that SBSD minimizes the RHS of (1.12), therefore using lemma 4.6 in

Neely’s book [39], we can show that SBSD also stabilizes QB(t), and hence the

billing constraint (1.1) is asymptotically satisfied.

Some further remarks are in order:

• As long as the technical requirement “λ(t) and d(t) have finite second

moments” is satisfied (used in the proof of asymptotic feasibility), SBSD

will satisfy the budget constraint (even if for example their statistics are

not Markovian, or their predictions are provided in a delayed or erroneous

fashion).

• It achieves a near-optimal average delay benefit without a priori knowledge

of popularity or delay statistics, but rather by looking at the hourly learned

popularity and delay profile and keeping a budget counter.

• [43] has shown that QB(t) plays the role of a stochastic Lagrangian multi-

plier. Therefore, when λ(t) and d(t) are stationary, we also anticipate that

QB(t) will vary around a value related to V , hence we can pick a large V .

However, with non-stationary demand and delay profiles, we expect QB(t)

to vary following non-stationary trends, and therefore it becomes essential

to pick a small V in order to make the algorithm robust.

It remains to show that SBSD in fact solves (P), by achieving a near optimal

time average delay benefit. We show this next for two different cases, (i) non-

overlapping, and (ii) overlapping SBS coverages.

Non-overlapping SBS coverage. When SBS coverage is non-overlapping,
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each subarea can reach a single SBS cache, which immediately simplifies routing

splits xij,f (t), such that xij,f (t) = 1, ∀t if subarea i can reach SBS j and 0 oth-

erwise, for all i, j, f . In essence, each request can be served only by the reachable

cache (or the MBS when the file is not cached there). We will see that this makes

our problem relatively easy to solve.

First, we note that caching file f at SBS j in slot t brings the following delay

benefit:

Kj,f (t) ,
∑
i

(dis(t)−dij(t))xij,f (t)λi,f (t),

which is computable using known parameters d,x,λ (x is a parameter here

because it is fully determined by the reachability of the cache) and independent

of the decisions y(t), z(t). Consequently, the SBSD optimization becomes:

max
yj≥0

zj,f∈{0,1}

V
∑
j,f

Kj,f (t)zj,f −QB(t)
∑
j∈J

yjhj(t), (1.14)

s.t.
∑
f∈F

zj,f ≤ yj/b, ∀j, f.

Due to its simple form, (1.14) can be solved by inspection. At each pair SBS-

slot (j, t), we order files in decreasing values of Kj,f (t). For an investment yj(t),

the highest delay benefit is collected by caching the yj(t)/b files that rank higher

in this list. This provides directly the solutions z as a function of y, it remains

now to determine the latter. With a slight abuse of notation, let us call σ the

permutation of file indices that implies Kj,σ(1)(t) ≥ · · · ≥ Kj,σ(|F|)(t) (the abuse

is because we do not explicitly denote the dependence of σ on j, t to reduce

clutter), then we can decompose the investment decisions per SBS, and find

y∗j (t) by maximizing:

y∗j (t) ∈ arg maxyj≥0

byj/bc∑
f=1

Kj,σ(f)(t)−
QB(t)

V
hj(t)yj .

Above, y∗j (t) can be efficiently computed by listing partial sums
∑byj/bc
f=1 Kj,σ(f)(t)

for yj/b = 1, 2, . . . until the difference of one partial sum from the previous be-

comes smaller than QB(t)
V hj(t).

Mathematically speaking, the above might include cases where the solution

is to avoid investment altogether (
∑
j y
∗
j (t) = 0), or buy storage for all files

(y∗j (t) = |F|), however in practice these cases are extremely rare, because of the

skewness of popularity: we will always benefit from storing popular files and we

will seldom benefit from storing unpopular ones. Moreover, since we decouple

the problem with the subarea-SBS association, the problem can be decomposed

into each SBS’s problem. Below we give the algorithmic steps to find yj and zj
for all SBS j ∈ J optimally in detail:

1. Calculate Kj,f (t) =
∑
i(dis(t)− dij(t))xij,f (t)λi,f (t) for all files.
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2. Sort Kj,f (t) with permutation σ, such that Kj,σ(1)(t) ≥ · · · ≥ Kj,σ(|F|)(t).

3. Set partial sums S(e) =
∑e
f=1Kj,σ(f)(t), for e = 1, 2, . . . .

4. Find e∗ which is the smallest e that ensures S(e)− S(e− 1) < QB(t)
V hj(t).

5. Choose cache lease: y∗j (t) = e∗b.

6. Choose file placement:

z∗j,σ(f)(t) =

{
1 if f ≤ by∗j (t)/bc,
0 otherwise.

Then, the algorithm, namely Optimal algorithm in the non-overlapping SBS

case has the following features:

• Given virtual queue length, storage price, and parameter V , the algorithm

finds the amount of storage that if leased it optimizes a weighted sum of

delay benefits and budget penalties.

• For the found storage amount that is leased, files are cached at each SBS

according to which yields the highest delay benefit, until the available leased

storage is completely filled up.

General case with overlapping SBS coverage. Next, we consider the

general case, where the areas that SBS cover may overlap. In this case, area-

SBS association variables xij,f (t) must be jointly decided with cache rental and

file placement, and we may no longer use the trick with Kj,f (t), since the user

can be served from possibly multiple SBSs and the actual collected delay benefit

depends on which SBS is selected. We remind the reader that the SBSD strategy

determines the decisions solving:

max
yj≥0

xij,f∈[0,1]
zj,f∈{0,1}

V gt(x, z)−QB(t)
∑
j∈J

yjhj(t), (1.15)

s.t.
∑
f∈F

zj,f ≤
yj
b
, ∀j.

∑
j∈Ji

xij,f =1,∀i, f.

We note that (1.15) as formulated is a mixed integer non-linear program

(MINLP) due to the product of variables xij,f and zj,f that appears inside gt
in the objective. To proceed, we linearize the objective by replacing products

xij,fzj,f with simply xij,f , and adding an extra constraint xij,f (t) ≤ zj,f (t).

Note that if zj,f (t) = 0 then the constraint implies that xij,f (t) = 0 as well,

eliminating any delay benefit at the objective. Also if zj,f (t) = 1, variable xij,f (t)

is not affected by the new constraint, and works as before. To deal with the case

where a file is not found in any cache (which by our new construction would

imply
∑
xij,f = 0 and would violate the last constraint), we must also add a

dummy allocation variable xis,f to ensure that the constraint (1.4) can be always
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satisfied. We remark that due to the maximization, these dummy variables are

always forced to take zero value if a positive delay benefit can be obtained.

Now, the problem becomes a Mixed Integer Linear Program (MILP). To solve

this problem, we can consider three approaches as follows:

• We may solve the linear relaxation of (1.15), and then use a rounding

technique to obtain an approximation guarantee, e.g., a possibility is to

combine the relaxation with randomized rounding [44]. By §4.7 of [45], our

approximate solution of (1.15) will provide an elastic CDN strategy with

approximate feasibility and average delay benefit. In turn, the approximate

feasibility can lead to a feasible strategy with some extra losses.

• As explained in [14], it is possible to use MDS codes to achieve an effective

“fractional file placement”. In essence, each cache stores a number of linear

combinations of file chunks which correspond to fractions of a file, and then

each user can combine different such coded chunks to produce the original

file. In this context, the SBSD becomes a Linear Program and can be solved

quickly to optimality.

• A third approach is to obtain an efficient approximate solution is to apply

the idea of “Low complexity scheduling” from [46]. This method assigns to

the leased cache capacity by smoothly increasing it or decreasing it with a

small step size. The sign of the change is randomly chosen. Then it resolves

our SBSD optimization to get a new average delay benefit, and if these new

values outperform previous delay benefits, the random solution is applied.

In this chapter, we take the third method as an example to derive an algo-

rithm in the general case. In this context, we provide a stability guarantee for the

budget queue length QB(t), which implies that the produced strategy is asymp-

totically feasible. The strategy, namely Randomized algorithm is described in the

following steps:

1. For the first time slot, leased cache capacity y∗j (1) is chosen as Bavg/(|J |havg)
for all SBSs.

2. Based on the decided leased cache capacity for each SBS, file caching and user

association solutions (x∗(t), z∗(t)) are obtained using a greedy file caching

(GFC) policy and an optimal user association (OUA) policy for a given file

caching solution which are described in the following.

3. For time slots t > 1, leased cache capacity y′j(t) is chosen as y∗j (t − 1) + δ ·
Uj(t− 1) where δ denotes small step size and Uj(t− 1) is uniformly chosen in

{−1, 1} for all SBSs.

4. Based on the decided leased cache capacity for each SBS, file caching and user

association solutions (x′(t), z′(t)) are obtained using a GFC policy with an

OUA policy for a given file caching solution.

5. Compare V gt(x
′(t), z′(t))−QB(t)

∑
j∈J y

′
j(t)hj(t) and V gt(x

∗(t− 1), z∗(t−
1))−QB(t)

∑
j∈J y

∗
j (t−1)hj(t) and choose a set of solutions whose objective

value is greater as an optimal set of solutions, i.e., (x∗(t), z∗(t)).
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Figure 1.5 Improvement in performance due to the elastic cache lease and file caching
and the elastic behavior in a non-overlapping SBS scenario: 2 SBSs, 2 areas, 10 files in
each SBS, average cache lease budget is the same with caching 6 files in each time slot.

The greedy file caching (GFC) policy begins with an empty cache set in all

SBSs. Then, this policy iteratively caches files one-by-one in all SBSs where an

added file in each step is selected so as to maximize the differential objective value

in (1.15). For a given set of cached file, the OUA policy is to choose association

variables by

x∗ij,f (t) = argmax
xij,f (t)

(dis(t)− dij(t))z∗j,f (t)λi,f (1), ∀i, f.

This solution is robust due to the comparison mechanism between the solution

of the current time slot and that of the previous time slot. Namely, if the budget

queue increases due to the excessive investment for cache lease, it reduces the

objective value, hence it forces the decision maker to choose the solution of the

previous time slot. On the other hand, if the budget queue decreases due to the

less investment for cache lease, it increases the objective value, hence it forces the

decision maker to choose the solution of the current time slot. This mechanism

stabilizes the budget queue.

Moreover, for a given leased cache capacity, a joint file caching and user asso-

ciation problem is shown to be a monotone submodular problem with matroid

constraints in respect to cached files in SBSs according to the recent literature,

e.g., [47]. This implies a greedy-fashioned file caching algorithm in conjunction

with the optimal user association (OUA) policy (for a given file caching solu-

tion) probably achieves a constant factor approximation (1−1/e) to the optimal

performance.

To quantify the performance improvement of the elastic cache lease and file

caching over the static policies, we run simulations under a simple non-overlapping

SBS scenario (2 SBSs, 2 areas, 10 files in each SBS). We assume that each area

is associated with the nearest SBS. In this scenario, delay for the serving area

by SBS and delay for the serving area by remote servers in each time slot are

drawn from the Gaussian distribution with various parameters and taken only

positive values. To capture the spatio-temporal diversity of file popularity, the
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arrival rate of each file is drawn from the Zipf distribution [38] and different Zipf

parameters are used for each area and each period of time slots.7

We compare the proposed algorithms, i.e., Optimal and Randomized with Stat-

icCaching and StaticBudget policies. The StaticCaching policy caches the files

based on the general content popularity with the static cache investment, i.e.,

caching the same number of files at all SBSs whereas the StaticBudget policy

uses the static cache lease for all time slots but file caching is chosen so as to

maximize our objective function in SBSD, i.e., this policy adopts an adaptive

file caching for a given cache capacity.

Fig. 1.5 shows the budget queue statistics of the elastic algorithms, total end-

to-end statistics and leased cache capacity for all algorithms. The elastic algo-

rithms (i.e., Optimal and Randomized) opportunistically exploit the dynamics

of network delays and file request arrivals with keeping average leased cache

capacity whereas the static algorithms (i.e., StaticCaching and StaticBudget)

leases a fixed amount of budget every time slot. For example, when the traffic

demand is higher and Zipf parameter is low, then the higher cache capacity is

leased, and vice versa. As a result, we could find interesting observations from

this simulations as follow: (i) the elastic algorithms perform better than the static

algorithms in terms of total end-to-end delay (at least 53% reduction) in even

less leased cache capacity. (ii) Randomized policy shows the close to the optimal

performance (83% in terms of average end-to-end delay). These results can be

found in real spatio-temporal traffic and content popularity variation scenarios

such that the traffic arrival is high and Zipf parameter is small during the day

and the traffic arrival is low and Zipf parameter is high during the night (in

temporal diversity), and such daily traffic and content popularity distribution

can be changed when the CDN simultaneously serves Europe and Russia with

4 hours time shift (in spatial diversity). In this experiment, the idea is to save

money by not using memory at low traffic. However this will not bring significant

benefit in practice because the CDN operator, e.g., AWS will be unhappy with

this and raise the price of peak hours to mitigate the low utilization of the cloud

system. Hence, the real economical benefits will appear if the filing of one CP

can be covered by other CPs.

1.5 Conclusion

The economics of caching is one of the less explored research areas than the tech-

nical content caching studies even though it is quickly gaining momentum thanks

to the advances in network virtualization, which enables elastic control of storage

resources. These flexible technologies in conjunction with dynamic wireless net-

work environments introduce new business models in caching services. To reflect

7The sum traffics for all files at each time slot and each area are drawn from the Gaussian

distribution with various parameters and taken only positive values.
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these new business models, it is required to redesign techno-economic mech-

anisms and policies and specifically to devise novel cache investment schemes

that are suitable for these multilateral and almost real-time environmental vari-

ations in the presence of limited information about future content demand and

wireless channel states.

First, we focused on the recent economic ecosystems of caching services. Col-

laboration and benefit distribution between vertical stakeholders and competi-

tion between the horizontal stakeholders were investigated. We then discussed

differences of the core in-network caching and wireless edge caching in a perspec-

tive of economics. Second, we focused on a specific elastic cache lease, content

caching, and request-SBS association problem where a CP has a limited aver-

age budget for operating costs of cache and bandwidth investment. Accordingly,

we provided possible cache lease, content caching, and request-SBS association

solutions by exploiting the Lyapunov optimization and randomized scheduling

techniques. Finally, we quantified the benefits of the elastic cache lease over the

static cache lease, and provided discussions for smart pricing.
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