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Abstract—In a publish/subscribe network, message delivery is
guaranteed for all active subscribers at publish time. However, in
a dynamic scenario where users join and leave the network, a user
may be interested in content published before the subscription
time. In this paper, we introduce mechanisms that enable caching
in such networks, while maintaining the main principle of loose-
coupled and asynchronous communication. Furthermore we
investigate two caching policies; caching in all candidate brokers
(basic caching) which yields high survivability and low delay
and caching in leaf brokers (leaf caching) which maintains low
overhead and querying complexity. The comparison is performed
via simulations and testbed measurements and insights are given
for future work.

I. INTRODUCTION

The Internet has considerably changed the scale of dis-
tributed systems. Distributed systems now involve thousands
of entities whose location and behavior may greatly vary
throughout the lifetime of the system. These constraints make
more dire than ever the need for flexible communication mod-
els. The publish/subscribe (pub/sub) paradigm has become an
important architectural style for designing distributed systems
and has recently been considered one of the most promising
future network architectures that solves many challenges of the
current Internet. Applications that exploit a pub/sub communi-
cation paradigm are organized as a collection of autonomous
components (clients), which interact with publishing events
(messages) by subscribing to the classes of events they are
interested in. The event dispatcher (broker) is responsible for
collecting subscriptions and forwarding events to subscribers.
In content-based pub/sub systems the selection of a message
is determined entirely by the client, which uses expressions
(filters) that allow sophisticated matching on the event content.

There are several research efforts concerned with the de-
velopment of an event notification service including IBM’s
Gryphon [1], Siena [2], Elvin [3], and REDS [4] which
implement the pub/sub architecture. Most of them address
scalability and ease of implementation by realizing the broker
tree as an overlay network.

In a pub/sub system, any message is guaranteed to reach
all interested destinations, (completeness property) [5]. The
above holds for all clients that are active and therefore
their subscriptions are known to the system at publish time.
However, in a dynamic environment, clients join and leave
the system during time, and it is possible that a client joins
the network after the publishing of an interesting message.
In pub/sub systems it is not possible for a new subscriber
to retrieve previously published messages that match his/her

subscription. Therefore, enabling the retrieval of previously
published content by means of caching is one of the most
challenging problems in pub/sub networks.

Despite the staggering volume, a large percentage of net-
work traffic is redundant. Multiple users, at any given site, re-
quest much of the same content. Caching performs replication
of content to serve identical requests locally, and to prevent
them from overutilizing the network resources. A cache stores
content on a storage device that is physically or logically
closer to the user. In this paper, we put forward a different
aspect of caching, focusing on preserving the information over
time instead of making information available in nearer space.
Potential applications that naturally require publish/subscribe
messaging and could be enforced by our caching technique
are software and antivirus updates, stock markets, web search
engines, distributed sensor networks, etc.

Caching on the Web has been thoroughly investigated
for cooperative and non-cooperative architectures. In [6] a
cooperative hierarchical Web caching architecture was studied
while in [7], the authors introduce the Internet cache protocol
(ICP). All caching protocols presume the existence of a node
(called data center) where all the information is stored. Any
data request is forwarded to the data center which in turn
responds with the requested data. Caching is used: 1) to
save bandwidth and cost by placing the cache engines in
strategically chosen points; 2) to improve productivity for end
users by retrieving information much quicker. In other words,
end users see dramatic improvements in response time and
the whole procedure is completely transparent to them. In
our work caching is used for making information available to
future subscribers and therefore it cannot be directly compared
with traditional caching methodologies.

Caching as a mechanism for storing data in pub/sub systems
has not received attention in the literature. Nevertheless, there
exists a limited number of efforts in the topic of retrieval
of historic data. The work in [8] deals with content-based
networks and particularly the authors propose two forms of
subscriptions that allow a wireless ad-hoc network user to
subscribe to past events and thus to improve the bootstrapping
process. As bootstrapping process they refer to application
layer mechanism that helps a mobile system to adapt to current
contextual information which is only available locally. The
first form uses logical mobility to harness possible client
movements and proactive subscription in future locations to
bootstrap virtual counterparts before the actual need for data
forwarding. The second form is based on buffers and offers a



way to integrate data repositories distributed in the network.
Their approach concentrates on the class of applications that
commence normal operation after having seen a sequence
of notifications. The essential idea is to provide the con-
sumer/subscriber with a correct sequence of past notifications
as if it had subscribed earlier. On the contrast our approach
is not confined in any particular class of applications and in
this sense, it is more general. A case not covered by [8] could
be a stock market where a user is interested in stock prices
published before the time of its subscription. In such case the
user requests location independent information and he/she may
be interested in any available old information and not only a
small fraction of it.

The second form presented in [8] is more relative to
our work. However, the focus is on using the reverse of
advertisements paths to propagate the past subscriptions. This
is restrictive since it assumes a relation between the publisher
and the storing capability of the network which is not always
true. In our case, we make this clear distinction of the
two entities, and publishers are free to publish and roam
or disappear from the network. Moreover, the buffering of
notifications in every broker proposed in [8], clearly favors
the most recent notifications but it is possible that the overall
performance is actually deteriorated. For example, storing each
message in every broker results in reduction of the network
storing capacity. In our buffering/caching approach, we study
several caching policies in order to identify the performance
dependence on these policies and showcase optimality where
possible.

In [9], the authors propose a historic data retrieval pub/sub
system where databases are connected to various brokers, each
associated with a filter to store particular information. The
database holding the relevant information republishes historic
events on receipt of a subscription query with a time-based
parameter. This parameter categorizes the content in classes
and therefore the work of [9] is related to topic based pub/sub
systems. In the same work, every database advertises the
class to the network so that subscribers interested in past
information belonging to that class can request it from the
specific database. This approach it totally different from ours
since apart from using “heavy” database modules it also
indexes the information (by assigning a class attribute) while
we are interested in the caching problem for content-based
delivery. Generally speaking, the content-based information
delivery is much more demanding than the indexed counter-
part. This property reflects upon routing efficiency, overhead,
dissemination and query delays with the indexing being always
helpful but resulting in a more restricted solution.

In [10] a mechanism for authorizing and controlling historic
event republication is proposed as an extension to [9]. Specif-
ically they describe how policy administrators can exploit
context-aware access mechanisms to control data disclosure.
Their approach unifies delivery for both live and historic
events, providing a common interface for the administration
of disclosure policy, while facilitating similar event-processing
actions for both types of events. They also provide a database

API (Application Interface) at each broker and use class
attributes to advertise the stored information as in [9] but they
also use policies to restrict and enrich information flows. For
example in a healthcare scenario a request for old data might
come from a user with limited access rights. In that case the
databases transform the stored data before sending them back
(removing for instance the name of a patient).

In this paper, we describe and evaluate through simulations
and testbed experiments our design and implementation of a
caching technique on networks that use the content delivery
pub/sub communication paradigm. Particularly, we provide
each broker with a limited cache and enhance the pub/sub
paradigm with a request/response mechanism so that nodes
can retrieve previously published events. For the purpose of
this paper we call those events (messages) as old messages.
Our proposed solution maintains the basic pub/sub principles
i.e. the loose-coupled and asynchronous communications. This
is because we do not assume predefined caching points and
the requests for old content are handled transparently by the
network. We study and compare different caching strategies
based on the replication degree of the content with regards to
network overhead, delay and content life-time in the caches.

The rest of the paper is organized as follows. In section
II, a brief introduction of the pub/sub architecture is given,
followed by the description of the proposed request/response
mechanism in section III. The caching policies are described in
section IV and section V is devoted to performance evaluation
via simulations. In section VI we evaluate our system with
testbed measurements and conclude the paper in the last
section.

II. THE PUB/SUB ARCHITECTURE

We consider a pub/sub system which use the subscription
forwarding routing strategy [2]. The routing paths for the
published messages are set by the subscriptions, which are
propagated throughout the overlay network so as to form a
tree that connects the subscribers to all the brokers in the
network.

Particularly, when a client s; issues a subscription, a
Subscribe (f;, s;) message containing the corresponding
subscription filter f; is sent to the broker n;, the client is
attached to. There, the filter is inserted in a Subscription Table
(ST;), together with the identifier of the subscriber. Then, the
subscription is propagated by n;, which now behaves as a
subscriber with respect to the rest of the dispatching network,
to all of its neighboring brokers on the overlay network,
this time with the syntax Subscribe (f;, n;). In turn, the
neighbors record the subscription and re-propagate it towards
all further neighboring brokers, except for the one that sent
it. Finally, each broker nj has a ST, in which for every
neighboring broker n; there is an associated set of filters
F'(n;) containing the subscriptions sent by n; to ny. In other
words, nj, may have in its ST the record f; — nj_1, which
means that neighbor nj_; is subscribed to f;.

This scheme is usually optimized by avoiding subscription
forwarding of the same event pattern in the same direction



exploiting “coverage” relations among filters. That is, a sub-
scription is forwarded to a neighboring broker only if it is
not being covered by a subscription already forwarded to the
same neighbor. We say that a subscription f; covers another
subscription f,, denoted by f1 > f,, iff any event matching
fo2 also matches f; [11].

Requests to unsubscribe from an event pattern are handled
and propagated analogously to subscriptions, although at each
hop entries in the subscription table are removed rather than
inserted. For an in-depth discussion of the pub/sub architecture
see [12].

III. ENABLING CACHING IN PUB/SUB SYSTEMS

In this section, we describe the key points of the proposed
enhancement. By installing caches in brokers and introducing
a request/response mechanism we aim to provide a pub/sub
system with the ability to make the old information available
for future clients. Our first consideration here, is not to tamper
with the core functionality of the pub/sub paradigm. The
relative question is: can a pure content-based pub/sub system
preserve information in an efficient way?

A. Caching points

In our system, each broker is selected as a candidate caching
point for a message as long as it has in its subscription table
at least one client subscribed in this message. A published
message is transferred to all brokers with client subscribers.
Also, a broker with a client subscriber is easily reached by
a request message (the same way it is reached by a publish
message as described in the next section) through the paths
set by the subscription tables.

In the literature, efficient techniques for the selection of the
caching points have been proposed ([13]-[16]) but their ap-
plication would require additional functionality not supported
by a pure pub/sub system (i.e. mechanism for discovering the
location and content of caches).

B. Request/Response mechanism

In order to retrieve old information, we add to the sys-
tem two additional types of messages, Request () and
Response ().

When a client node so interested in old content appears
in the network, apart from subscribing, he/she also makes a
request by sending a Request (f2, s2) message, see figure
1 (step 3). The Request () message is propagated similarly
to the Publish () message, but additionally it carries along
all the broker identifiers of the path it has crossed. Broker
n, upon receiving the Request (fa, s2) message checks in
its ST, for subscriptions matching filter f;. The subscription
can be either from another broker or from a client. For
every existing subscribed broker (n; in this case) the broker
forwards the Request (fy,n, — s2) message with its
identifier appended. If no further broker subscription exists
the Request message is dropped. At a distant broker n;
the syntax of the arriving request message would look like
Request (fo,ni—1 — — ng — 82). Each broker
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Fig. 1.  Enhanced pub/sub paradigm. Steps 3 and 4 illustrate the novel
architecture.

-recipient of a request message- with at least one client
subscription, searches in its cache for messages matching
the initial filter f5. If a matching is found, a Response ()
message is initiated.

The Response () message carries an old message as
well as the sequence of nodes carried by the initiating
Request (). When a broker receives a Response () mes-
sage, it pops off its identifier from the sequence and forwards
it to the first broker of the remaining sequence. In the end,
client so will receive the message. With the above procedure,
every new subscriber and only that one will receive every old
message matching its filter and is still cached in at least one
cache in the system.

Figure 1 illustrates the whole procedure. Step 1 showcases
a typical subscription procedure. Notice that apart from the
Subscribe () message also a Request (f1, s1) message
is sent but it is dropped in broker m; since there are no
other broker subscribers to be sent, and no client subscribers
whatsoever. Step 2 illustrates a typical publish procedure.
Candidate broker n; caches the message in its cache. In step
3 another client subscribes and requests. The requested filter
is matched with filter f; sent by broker n; so the request
is forwarded to m;,. Here we have set f; > f; and the
subscription gets covered at n,. In step 4, client sy receives
the response message and broker n, caches it.

C. Handling multiple responses

Multiple caching at different brokers has as side effect
the possible production of multiple identical responses on a
single request. In order to deal with this effect, we supply
our system with the following duplicate response dropping
mechanism. Every broker with client subscriber, upon the
arrival of each response message, checks whether the message
appears already in its cache and in case this is true, drops
the response message. Otherwise it forwards the message
according to the technique described in section III-B.

In the example of figure 2, we suppose that brokers 1, 4,
and 7 have in their cache the same “black” message. If now
a client connects to broker 5 and subscribes with some filter



Fig. 2. A dispatching network with subscriptions laid down according to a
subscription forwarding scheme.

matching with “black”, the request will reach brokers 1, 4
and 7 and those brokers will reply with a response message.
The response message sent by broker 1 will be dropped upon
reaching broker 4 since the message is in brokers’ 4 cache. The
same dropping procedure will also occur at broker 5 for the
response that comes from broker 7, given that broker 5 has
already become “black™, after the reception of the response
initiated on broker 4.

The procedure of responding involves a certain amount of
overhead that is unavoidable. Note that the cache of each
broker is limited and we do not know a priori if the cached
message lives the same amount of time at each cache. This
means that even if two broker subscription tables have clients
subscribed for the same filter and have cached in the past
the same messages (matching that filter) there is no certainty
that requesting only one of them will be enough to get those
messages since the time that each message lives at a cache is
not the same and depends only at the local workload of each
broker.

On the other hand, the reason for searching the cache of
every broker upon the arrival of each response and drop it
if the message is already cached there, is because responses
follow the same route (backwards) as the requests. This means
that the request for initiating the abundant response has also
been processed by the broker under question.

Note also, that the requests cannot be dropped in a similar
manner, because we consider a content-based system, and
finding a matching message in a proximity broker does not
guarantee that there is no other different message in the net-
work matching the same subscription. Since we are interested
in all messages matching our filter, we are destined to search
all possible brokers having any matches. This content-based
property causes significant overhead in the network.

D. Priority policies

A priority policy provides a rule of how to choose a message
to drop each time a cache is overflown. In this paper we are
studying the traditional first-in first-out (FIFO) policy. We also
drop a message once the broker has no clients subscribed to
filters matching this message. Apart from FIFO, there are
numerous policies that can be proposed, including random

drop policies. One policy of interest in case of messages
with variable popularity, is to order the cached messages with
popularity order, or some weighted metric taking into account
popularity and time spent in the cache. Alternative policies are
left as future work.

IV. CACHING POLICIES

A caching policy provides a rule on whether to cache a
message or not on each particular broker. Each caching policy
in this paper obeys the basic rule cache only on brokers
having at least one client subscriber who is interested in
this publication. We call these brokers, candidate brokers.
Further selection is possible using topological properties of
the brokers.

A. caching at every candidate: basic caching

Upon receiving a publish message a candidate broker caches
the message by putting it at the top of the cache. Upon re-
ceiving a response message the broker that has as a subscriber
the client that issued the request message also caches the
message. In the example of figure 2, brokers 1, 4, 7 were
candidate brokers at publish time and they all cached the
“black” message. At request time, candidate broker 5 will also
cache the message under the basic caching policy.

B. caching at leaf brokers: leaf caching

Leaf brokers are the candidate brokers having only client
subscribers for the message under question. In the above
definition, the broker subscriber that sent the message is not
counted. In the example of figure 2, at publish time of “black”
message we have the candidate brokers 1, 4, 7 and only 1 and 7
are leaf brokers. Note that broker 4 has two broker subscribers.
Under leaf caching, only 1 and 7 cache the “black message”.
Similarly, for the “gray” message, only broker 11 qualifies
as leaf broker. Also, in the case of request from 5 (step 3),
broker 5 will not cache the message since there are two broker
subscribers on this broker (4 and 6).

V. PERFORMANCE EVALUATION

In this section we evaluate the proposed mechanism using a
discrete event simulator. [V brokers are organized in a balanced
binary tree (complete for N = 7,15,31,63,...) and clients
are dynamically generated on each broker according to a birth
and death process with birth rate A and death rate p. Each
broker has a cache capable of storing k messages. Initially
all caches are empty until the publish time. On publish time,
we generate M different messages matching exclusively the
M possible subscriptions. We let the system operate under the
dynamic client environment using the FIFO priority policy and
compare the basic and leaf caching policies. We are looking
at the following interesting metrics.

o The absorption time of message m is the time passed
from the publishing of m until it gets disappeared from
the network. This metric is indicative of the capability of
the network to maintain messages in its memory.
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Fig.3. ®N =7 BN =15 ¥ N = 31. Performance of caching for several
values of client dynamics (A/u) and number of brokers.

o The minimum hop distance is measured for each success-
ful response and corresponds to the minimum number of
hops between a responding broker and the broker where
the client making the request is attached to. This metric is
indicative of the delay of responses as a function of hops
in the network. It also makes a picture of the message
replication.

o The responses per request is measured for each success-
fully responded request and corresponds to the number
of total responses for the given request. This metric is
representative of the replication and the overhead in the
network.

o The cache slots searched per request is the total sum
of occupied slots of each searched cache during a suc-
cessfully responded request. In a content-based network
the caches must be searched exhaustively for any possible
match. This metric is representative of the cache querying
complexity.

The above metrics are random variables and we estimate
their mean by simulating thousands of observations. We set
three experiments, one varying the dynamics of the clients
(A\/p), one varying the cache size as a percentage of M and
one varying the number of brokers.

In the first experiment (figure 3) we can identify the expo-
nential nature of absorption time and also verify that the basic
caching offers the best survivability of information. The basic
caching is also superior in terms of the minimum hop distance.
The advantages of thin replication schemes is showcased for
leaf caching in overhead and complexity subfigures.

In figure 4 the impact of cache size is demonstrated. In most
cases, using a small percentage of cache (that is k¥ = 0.3M)
is enough to achieve order performance.

In figure 5 the scalability issues are demonstrated. Complex-
ity and overhead are linear to the size of the network while
delay grows very slowly for the basic caching policy. The
survivability of the network is improved with the size of the
network making the need for cache size less and as N grows.

Cache size (%) Cache size (%)

Fig.4. ® N =7 BN =15 Y N = 31. Performance of caching for several
values of cache percentage (of number of messages) and number of brokers.
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VI. SYSTEM DESIGN AND EXPERIMENTATION

We build our implementation on top of REDS [4], by
making modifications on the routing layer. Particularly we
add Request() and Response() as functions in Subscription-
ForwardingRoutingStrategy of the Routing Strategy interface.
In order to cache messages we introduce the GenericCache
and the Cache interfaces, similar to the GenericTable and the
SubscriptionTable already implemented in REDS. Transfering
of the new type of messages requires also slight modifications
of TCPTransport and UDPTransport at the Transport interface.

A. Testbed Evaluation

We used 7 laptops equipped with a 1,6 GHz Intel Celeron
M CPU, 512 MB of RAM. The 7 computers were connected
via Ethernet switch and the pub/sub overlay network was
organized in a complete binary tree. The choice of topology
is made for symmetry reasons in order to avoid favoring some
brokers. Clients are dynamically deployed using a birth and
death process with birth rate A = 0.1 which corresponds to
the generation of one subscriber per broker per message each
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10sec on the average. At publish time, 40 different messages
matching exclusively the possible subscriptions are generated.
We set two experiments, one varying the dynamics of the
clients (A\/p) and one varying the cache size (4-40).

The first two figures depict the average delay measured
as the time difference between the generation of the request
message until the reception of the response message. Delay
performance corresponds to the minimum hop distance metric
described above, assuming a fixed delay per hop. Indeed, the
two results seem to be in conformance and the basic policy
seems to always outperform the leaf policy. This is expected
since the replication of the first is a superset of the second and
therefore the responding broker can be closer or at the equal
distance.

The second set of figures depicts the system delivery ratio
measured as the ratio of total requests over total successful
responses in all clients. The experimentation time is selected
to be 350sec which creates a bias on the result. For example,
if we reduce the experimentation time, the delivery ratio will
increase since the time that each message is alive will be a
higher percentage of the total experimentation time. Keeping
this example in mind, explains why the delivery ratio is
actually a representation of absorption time.

Finally, the last figures show the number of responses per
request, same to the third metric presented in the simulations.
In all above examples, the measurements support the findings
of simulations.

VII. CONCLUSION AND FUTURE WORK

We put forward a new mechanism for distributed caching

in content delivery pub/sub networks. The proposed concept
equips the pub/sub with the ability to retrieve old information.
Evaluation via simulations presents the performance of the
system regarding information survivability, delay, overhead,
search complexity and scalability. The mechanism is also
implemented and measured in a testbed. This work can be
extended in many ways, from deriving applications to explor-
ing new caching and priority policies as well as extensions for
wireless ad-hoc networks.
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