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Abstract

In a publish/subscribe (pub/sub) network, message de-
livery is guaranteed for all connected subscribers at publish
time. However, in a dynamic mobile scenario where users
join and leave the network, it is important that content pub-
lished at the time they are disconnected is still delivered
when they reconnect from a different point. In this paper,
we enhance the caching mechanisms in pub/sub networks to
support client mobility. We build our mobility support with
minor changes in the caching scheme while preserving the
main principles of loose coupled and asynchronous com-
munication of the pub/sub communication model. We also
present a new proactive mechanism to reduce the overhead
of duplicate responses. The evaluation of our proposed
scheme is performed via simulations and testbed measure-
ments and insights are given for future work.

1. Introduction

The publish/subscribe paradigm has become an im-
portant architectural style for designing distributed sys-
tems. Applications that exploit a pub/sub communication
paradigm are organized as a collection of autonomous com-
ponents (clients), which interact by publishing events (mes-
sages) and by subscribing to the classes of events they
are interested in. The broker (or mediation router or ren-
dezvous point) is responsible for collecting subscriptions
and forwarding events to subscribers. In pub/sub networks
the selection of a message is determined entirely by the
client, which uses expressions (filters) that allow sophisti-
cated matching on the event content.

There are several research efforts concerned with the de-
velopment of an event notification service including IBM’s
Gryphon [1], Siena [2], Elvin [3], JEDI [4] and REDS [5]
which implement the pub/sub architecture. Most of them
address scalability and ease of implementation by realizing
the broker tree as an overlay network.

In all the above pub/sub systems, any message is guar-

anteed to reach all interested destinations. This holds for all
clients that their subscriptions are known to the network at
publish time. However, there are cases where clients joins
the network after the publication of an interesting message,
or move around the network during their lifetime. In tra-
ditional pub/sub schemes it is not possible for a new sub-
scriber to retrieve previously published messages that match
his/her subscription. Therefore, enabling caching for re-
trieval of past information is one of the most challenging
problems in content-based pub/sub networks.

The majority of the overlay pub/sub systems are de-
signed not to tolerate any form of topological reconfigura-
tion, therefore they cannot be exploited in those applica-
tion scenarios where decoupling would be most beneficial.
Here we are interested in supporting the mobility of clients,
where a client is disconnecting from the network and re-
connects from a different point later in time. Particularly,
we will use our research on caching in pub/sub systems [6]
to support mobile clients and we will examine the resulting
trade-offs between caching efficiency, system overhead and
message delivery guarantees to the mobile clients.

The rest of the paper is organized as follows. Section 2
discusses related work both in caching and mobility support
in pub/sub systems. In section 3, a brief introduction of the
pub/sub architecture is given, followed by the description
of our already proposed caching scheme. In section 4 we
present our approach to support mobility of clients while
section 5 describes our proposed duplicate response drop-
ping mechanisms. Moreover, sections 6 and 7 report on
the performance evaluation of the proposed system through
simulation and testbed measurements respectively. Finally,
section 8 concludes our experience and discusses future
work.

2. Related work

Caching as a mechanism for storing data in pub/sub sys-
tems has not received attention in the literature. In [6] we
introduced a caching mechanism where brokers opportunis-
tically caches information to make it available to future



subscribers. We actually put forward a different aspect of
caching, focusing on preserving the information over time
instead of making information available in nearer space as
the traditional caching schemes. Authors in [7] proposes a
caching mechanism, for wireless ad-hoc networks based on
buffers, that offers a way to integrate data repositories dis-
tributed in the network. Their approach concentrates on the
class of applications that commence normal operation after
having seen a sequence of events, while our approach is not
confined in any particular class of applications, being more
general in that way. Finally, in [8] and [9] authors propose
a historic data retrieval pub/sub system where databases are
connected to various brokers, each associated with a filter
to store particular information. The work on those two pa-
pers is based on predefined caching points in the network
and differs from our opportunistic point of view, where each
broker of the network is a potential caching point for each
published message.

The issue of mobility or relocation of clients in a pub/sub
system has not been explored in great detail. The first
pub/sub system that supported mobile clients was JEDI,
where a client used two functions (move-out and move-in)
to explicitly detach from the network and reconnect to it,
possibly through a different broker. In [10] authors imple-
ment a mobility support service that is independent of the
underlying pub/sub overlay and transparently manages ac-
tive subscriptions and incoming messages when a client de-
taches from one broker until it reattaches at another. They
use mobile service proxies which are independent, station-
ary components that run at the edges (where clients exist)
of the pub/sub network. In other words they use a second
overlay network to take care the mobility of the clients. That
second overlay is responsible to gather the published events,
that matches the interests of the mobile client, and deliver
them when the client reconnects to the network. The proxies
of that second overlay should be aware of the topology of
the mobile service network, since they should directly con-
tact each other when a client moves among them. Finally in
[11] authors present COMAN (COntent-based routing for
Mobile Ad-hoc Networks), a protocol to organize the nodes
of a MANET in a tree-shaped network able to self repair to
tolerate the frequent topological reconfigurations. COMAN
was designed to minimize the number of brokers whose
routing information are affected by topological changes, but
it is not support the retrieval of lost messages after the re-
configuration of the network.

3 The pub/sub system with caches

3.1 The pub/sub architecture

We consider a pub/sub system that uses the subscription
forwarding routing strategy [2]. The routing paths for the

published messages are set by the subscriptions, which are
propagated throughout the network so as to form a tree that
connects the subscribers to all the brokers in the network.

Particularly, when a client issues a subscription, a
Subscribe() message containing the corresponding
subscription filter is sent to the broker the client is attached
to. There, the filter is inserted in a Subscription Table (ST),
together with the identifier of the subscriber. Then, the sub-
scription is propagated by the broker, which now behaves
as a subscriber with respect to the rest of the network, to all
of its neighboring brokers. In turn, the neighboring brokers
record the subscription and re-propagate it. This scheme
is usually optimized by avoiding subscription forwarding
of the same event pattern in the same direction exploiting
“coverage” relations among filters.

3.2 Enabling caching in pub/sub systems

In this section, we give a short description of the caching
scheme firstly introduced in [6]. In our system, each bro-
ker is selected as a candidate caching point for a message
as long as it has in its subscription table at least one client
subscribed in this message, and depending on the caching
policy (the broker) caches or not each published message
matching the subscriptions of its clients. In this paper, we
call that cached message as “old” message/information. In
order to retrieve the old information, we added to the sys-
tem two additional types of messages, Request() and
Response(). A client node interested in old content
sends a Request() message with the interested filter. We
used source routing for the forwarding of the Request()
(the path is being built hop by hop and is included in
the Request() header). A broker upon receiving the
Request()message checks in its Subscription Table (ST)
for subscriptions matching the requested filter. The sub-
scription can be either from another broker or from a client.
The broker forwards the Request() message to every ex-
isting subscribed broker. Each broker -recipient of a re-
quest message- with at least one matching client subscrip-
tion, searches in its cache for messages matching the initial
filter. If a matching is found, a Response() message is
initiated.

As described in [6] a Response() message carries an
old message as well as the sequence of nodes carried by the
initiating Request() message (source routing). When a
broker receives a Response() message, pops off its iden-
tifier from that sequence and forwards it to the first broker
of the remaining sequence. In the end, the client will re-
ceive the message. With the above procedure, every client
will receive every old message matching its filter and is still
cached in at least one cache in the system. Figure 1 shows
how client C is trying to retrieve old information matching
his filter fltr c (we suppose that fltr cmatches both filters



ST

A: fltr_a

2: fltr_b

2: fltr_c

1

2

6
4

53

ST

1: fltr_a

3: fltr_b

3: fltr_c

ST

2: fltr_a

5: fltr_b

4: fltr_c

ST

3: fltr_a

B: fltr_b

3: fltr_c

ST

5: fltr_a

5: fltr_b

5: fltr_c

ST

3: fltr_a 

3: fltr_b

C: fltr_c

A

B

msg_a

msg_b

C

Req(fltr_c, C)

Sub(fltr_c)

R
e

q
(f

lt
r_

c
, 
C
→

4
)

S
u

b
(f

lt
r_

c
)

Req(fltr_c, C→4→3)

Sub(fltr_c)

Req(fltr_c, C→4→3)

Sub(fltr_c)

R
e
q
 (
flt

r_
c,

 C
→

4
→

3
→

2
)

S
u
b
(f
ltr

_
c)

S
u
b
(fltr_

c)

R
e
sp

 (
m

sg
_
a
, 
C
→

4
→

3
)

Resp (msg_a, C→4)

R
e

s
p

 (
m

s
g
_

a
, 

C
)

R
e

s
p

 (
m

s
g
_

b
, 

C
)

Resp (msg_a)

Resp (msg_b)

msg_a

msg_b

Resp (msg_b, C→4)

Figure 1. Caching and retrieving of old infor-
mation (in red are the new entries after the
appearance of client C).

fltr a and fltr b).
In [6] a message is removed from a broker’s cache when

all the interested client subscribers have been unsubscribed,
even if the cache is not full. This happens since future re-
quests cannot reach that broker due to the lack of entries in
the subscription tables of the rest of the brokers, pointing to
that corresponding broker. Moreover, we used the first-in
first-out (FIFO) with regenerations policy (similar to Least
Recently Used) as a way to select the message to be dropped
each time a cache is overflown. A Bloom-filter-based mech-
anism [12] could be used to solve scalability issues that
might arise by the usage of source routing and the accumu-
lation of broker ids at the header of the Request() and
Response() messages, but such an analysis is out of the
scope of this paper.

4. Mobility support

In this section, we describe a technique of using the al-
ready proposed caching scheme to provide support to mo-
bile clients, like in [10], but using the same pub/sub over-
lay and without adding new functionality. Particularly, us-
ing a portion of each broker’s cache, we allow brokers to
manage subscriptions and publications on behalf of the mo-
bile clients, both while they are disconnected and during the
switch-over phase.

When the client is connected, publishes and receives
messages directly to and from the pub/sub network. Be-
fore detaching, the client sends to the broker (call it broker
1 in figure 2), that he is attached to, a Request() mes-
sage requesting to detach. That request message is similar

to the message described in the above section but instead of
the requesting filter it contains the “id” of the correspond-
ing client. The broker has already in its Subscription Table
“ST” the id of the client and its subscription filters and now
whenever a message, matching those filters, arrive at the
broker he directly caches it (apart from delivering it to the
rest of the connected clients, if any, with a matching sub-
scription). Until now the procedure is exactly the same with
the procedure of the caching mechanism described above.
The different is the treatment of those cached messages.

More specifically, the messages that match the subscrip-
tion of the mobile client are never removed from the bro-
ker’s cache (only if the whole cache is full) until the client
retrieves them. In other words, the cache of the broker
is divided in two parts. The first one (call it “emergency
cache”) is for the clients in “movement” while the second
part is used for the traditional caching scheme. The size
of those parts is not fixed, particularly when there is no
client in movement the whole cache is used for the tradi-
tional caching scheme but when the broker serves mobile
clients the cache is mainly used to support this mobility.

When the mobile client reconnects to the network, from
a different broker (say broker 3), issues a Request()mes-
sage with the subscription filter (or filters or part of them)
that had subscribed to the pub/sub network before the move-
ment and the “id” of the broker that was connected (bro-
ker 1 in the example of figure 2). That request message
will reach according to [6] broker 1. Broker 1 upon receiv-
ing that request responds (using Response() messages)
with the cached messages (messages that arrived when the
client was in movement,msg a1 -msg an in the example),
unsubscribes the mobile client from its Subscription Table
and releases the part of the cache that was devoted to that
client. This means that those messages are treated accord-
ing to the scheme in [6] and are removed from the cache
if there are not any subscriptions in the broker from clients
interested in those messages (like in figure 2) or the cache
is full (FIFO with regenerations or any other cache place-
ment/replacement algorithm [13]-[14]).

5 Handling multiple responses

While the proposed mobility support mechanism does
not produce multiple duplicate responses, since only one
broker responds to the mobile client’s request, the caching
and retrieving scheme has as side effect the possible pro-
duction of multiple identical responses on a single request.
To deal with this effect, we provide our system with two
(reactive and proactive) duplicate preventing mechanisms.
In the reactive mechanism, every broker with at least one
client subscriber, upon the arrival of each response message,
checks whether the message already appears in its cache
and in case this is true, drops the response message. Oth-
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erwise, it forwards the message according to the technique
described in section 3.2. The reason for searching the cache
of every broker upon the arrival of each response, is be-
cause responses follow the same route (backwards) as the
requests. This means that the request for initiating the re-
sponse has also been processed by the broker under question
which may have responded to that request with the same
message(s). Note also, that the requests cannot be dropped
in a similar manner, because we consider a content-based
network, and finding a matching message in a proximity
broker does not guarantee that there is no other different
message in the network matching the same subscription.

In the proactive counterpart, every broker with a
cached matching message, apart from responding to the
Request() message, before forwarding it to its neighbor-
ing brokers appends to the Request() header the “id” of
the responded message. The brokers -recipients of that re-
quest message- will only respond with messages matching
the requested filter and their ids are not in the Request()
message, since those messages have already been sent to the
client issued that Request().

In the example of figure 3, we suppose that brokers 1, 4,
and 7 have in their cache the same “black” message while
brokers 8 and 11 have in their cache the same “grey” mes-
sage and broker 10 has in its cache a “blue” message. If now
a client connects to broker 5 and requests with some filter
matching “any color”, the request will reach all the above
mentioned brokers. Brokers 4 and 7 will reply with a re-
sponse message but the response message sent by broker 7
will be dropped upon reaching broker 5 given that broker 5
has already cached the “black” message, after the reception
of the response initiated on broker 4 (reactive mechanism).
Broker 1 won’t respond since the “black” message cached
is the same with the one cached in broker 4 and the “mes-
sage id” is carried by the Request() message (proactive
mechanism). Similarly according to the proactive dropping
mechanism only the response of broker 8 will be delivered
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Figure 3. A dispatching network where the
color of each broker represents the content
of the cached messages and the their client
subscription filters.

to the client. Finally, the response initiated in broker 10
will also reach the client. With this simple example is obvi-
ous how important are those two duplicate dropping mecha-
nisms and especially the proactive one. The disadvantage of
the proactive mechanism is the usage and the accumulation
in the request’s header of the “message ids” cached in the
network which is not scalable, but which can be beneficiary
in a well defined environment where the total number of the
published messages could be limited or finite.

6. Performance evaluation

In this section, we evaluate the proposed mechanism us-
ing a discrete event simulator. N = 7 brokers are organized
in a balanced binary tree and clients are dynamically gener-
ated on each broker according to a birth and death process
with birth rate λc and death rate µc. Those clients with rate
λmob go mobile and reconnect to the network after a ran-
domly selected period of time (with mean value ∆t). New
publications occur to the network with rate λmsg . Each bro-
ker has a cache capable of storing k messages. We are look-
ing at the following interesting metrics.

• The absorption time of a messagem is the time passed
from the publication of m until it gets disappeared
from the network. This metric is indicative of the capa-
bility of the network to maintain messages in its mem-
ory.

• The responses per request is measured for each suc-
cessfully responded request and corresponds to the
number of total responses that the system would have
generated if no duplicate dropping mechanism was
used. This metric is representative of the replication
and the overhead in the network.
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Figure 4. Performance of the mobility support mechanism for several values of the mobile time
interval ∆t (upper graphs) and the publication rate λmsg (lower graphs).

• The lost message ratio is measured for each mobile
client and is the ratio between the publications that
matches his subscription and were published when he
was disconnected and the messages that are finally de-
livered to the client after his reconnection to the net-
work. This metric is indicative of the capability of the
network to support mobile clients and is indicative of
the contention in the caches when they support mobile
clients.

The above metrics are random variables and we estimate
their mean by simulating thousands of observations. We
set two experiments, one varying the time interval that the
client is mobile (∆t) and one varying the publication rate
λmsg . Those two sets are similar to varying the dynam-
ics of the mobile clients (rate of going mobile and rate of
reconnected to the network) and varying the cache size re-
spectively. We run those two sets with four different values
of the client dynamics λc/µc = ρc = 0.1, 0.5, 1, 100 which
is similar to varying the number of the brokers in the sys-
tem.

Figure 4 shows three pairs of graphs. In the first pair
(subfigures “a” and “d”), we can identify the exponential
nature of absorption time. Particularly, increasing the time
interval that a client is mobile increases the mean absorption
time of messages since now more messages are cached in
the “emergency cache” and stay there for more time. But
increasing the number of publications (publication rate) has
as effect the contention of messages in the emergency cache

(more messages now have to be cached). The same effect
of message contention in caches occurs and in the case of
increasing the mobile time interval.

In the second pair (subfigures “b” and “e”), we present
the gain in overhead (percentage) as (duplicate) responses
per request that we have in our system by the usage of the
two duplicate dropping mechanisms compared to the case
that we have no dropping duplicate mechanisms. Using
those two dropping mechanisms, we have only one response
per successful request. For low mobility time intervals, we
have a gain of more than 250% something that also occurs
in low publication rates (350% gain). In high mobility time
intervals and publication rates that gain is less since now
due to contention in caches we have less duplicate messages
stored at each cache meaning less duplicate responses per
successful request. In low values of the client dynamics,
that gain is also low since now clients remain “alive” for
less time in the system and messages are not stored based
on the technique described in section 3.2. This overhead
gain increases with the number of nodes in the network.

Finally, in the last pair (subfigures “c” and “f”)we
present the lost message ratio described above. It is obvi-
ous that higher mobility time intervals or publication rates
forces the “emergency cache” to store more and more mes-
sages squeezing its capability to retain all the messages due
to contention increasing in that way the lost ratio.



7. System design and experimentation

We implementated the proposed system on top of REDS
[5]. Apart from the modifications made and presented in
[6] for the purposes of this paper, we altered the logic in
caching to support the mechanisms described in 4 and 5.
We used 5 laptops equipped with a 1,6 GHz Intel Celeron M
CPU, 512 MB of RAM. The 3 computers were connected
via Ethernet switch to set the pub/sub overlay network as
shown in figure 2. Another computer played the role of a
stationary publisher client while the final laptop played the
role of a mobile subscriber client. In our testbed experi-
ments, the mobile client issues one subscription while the
publisher publishes a series of publications (all publications
matches that subscription) at a constant rate of λp publica-
tions per second (λp = 1, 2) and publishes for 50 seconds
(50 and 100 messages accordingly). The mobile client mi-
grates from one broker to another only once and remains
disconnected for a fixed interval of ∆t = 15 seconds.

Figure 5 shows two pairs of graphs that we call mes-
sage/delivery time traces. The “message” axis is the num-
ber of messages delivered to the mobile client, while the
delivery time is when the message is received by him (set
time to zero when the first message is delivered). The left-
side graph shows the case where no mobility is supported,
while the right one shows the effect of our mobility sup-
port mechanism. Every point in the graphs corresponds to
a message received by the client either through the publish
or the request process. The part of the graphs where there
is no message delivery represents the time interval that the
client is disconnected from the overlay network, while the
vertical part of delivered messages (right-side graphs) after
the reconnection of the client represents the responses de-
livered to the client to his request sent to the broker that was
attached before the movement. It is obvious that all the pub-
lished messages finally arrive to the client while there is no
delay due to the processing associated with relocation.

8. Conclusion And Future Work

In summary, we have extended our proposed caching
scheme to support mobility of clients and we presented a
new duplicate dropping mechanism to reduce the system
overhead. Evaluation via simulations and testbed measure-
ments presented the performance of the system regarding
information survivability, overhead and quality of the pro-
posed mobility support scheme. This work can be extended
in many ways, from deriving applications to extensions in
mobile ad-hoc networks where both brokers and clients are
free to move.
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