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Abstract—A key consideration in novel communication
paradigms in multihop wireless networks regards the scalability
of the network. We investigate the case of nodes making random
requests on content stored in multiple replicas over the wireless
network. We show that, in contrast to the conventional paradigm
of random communicating pairs, multihop communication is a
sustainable scheme for certain values of file popularity, cache and
network size. In particular, we formulate the joint problem of
replication and routing and compute an order optimal solution.
Assuming a Zipf file popularity distribution, we vary the number
of files M in the system as a function of the nodes N , let both go
to infinity and identify the scaling regimes of the required link
capacity, from O

(√
N
)

down to O(1).

I. INTRODUCTION

Networking based on content has been deemed as a key
enabling technology for the future Internet [1]; routes are
discovered and maintained based on the content request and
provision. In this context, caching and prefetching information
play a key role in various performance metrics (e.g., delay,
throughput, scalability) and directly affect the Quality of Ser-
vice (QoS) experienced by the user. Successful architectural
paradigms like Content Delivery Networks (CDNs), Publish-
Subscribe and Peer-to-Peer (P2P) systems underline the impor-
tance of caching as a means of preserving information over
time and making it available in the vicinity of the user.

Wireless technology is another important enabler of the
future Internet, as it promotes ubiquitous access for roaming
users. Due to the volatile nature of wireless links and the
associated performance bottlenecks, caching content becomes
a challenging and important problem. Although it has been
shown that wireless networks cannot sustain long multihop
communications scenarios (the maximum common rate sus-
tainable for all flows in the network scales inversely propor-
tional to the number of hops [2]), it is unclear whether the
addition of caching capability makes the system sustainable.

In this work, we study the impact of caching on the capacity
of wireless networks, and make the following contributions:
(i) we formulate the joint problem of replication and routing
for minimizing the required wireless link capacity, and show
that the solution is of the same order with the solution of the
Continuous Density (CD) Problem, a mathematically tractable
problem; (ii) we present the solution to the CD Problem, (iii)
we investigate on the asymptotic laws on the link capacity and
show that it ranges from O(

√
N), implying that the wireless

network is not sustainable (as in [2]) down to O(1), the latter
implying that large enough wireless links suffice for the system
to be sustainable; (iv) we provide the conditions between the
number of files and the number of nodes so that caching
makes a difference in the system performance; these conditions
depend on the cache size and the file popularity distribution.

The paper is structured as follows: in Section II, we provide
an overview of past work, and in Section III, we define the
asymptotic notation. In Section IV, we define the Worst Link
Problem, which considers the exact placement of data at each
node along with their optimal delivery. This problem is of high
complexity; therefore, to derive a computationally feasible
solution, we present a series of related problems that culminate
to the mathematically tractable Continuous Density Problem.
The solution, presented in Section V, is within a constant
factor of the original problem. Then, in Section VI, we identify
on the asymptotic laws on the required link capacity when the
number of nodes and files increase.

II. PROBLEM BACKGROUND & RELATED WORK

Consider a wireless network of N nodes, where information
is exchanged using multihop communications; the maximum
throughput per node in such network scales as O

(
1√
N

)
[2]. This celebrated, albeit pessimistic result essentially states
that in large networks, per-user throughput is approximately
zero. The degradation stems from the assumed uniform traffic
matrix for the generation of throughput demand: the average
communicating pair hop-distance increases as Θ

(√
N
)

.
This work stimulated a series of attempts to breach the

boundary, as in [3], where cooperation is used to mitigate
the throughput drop (still hardly avoiding the

√
N law).

Nevertheless, the work in [4] established that the limitation
is in nature geometrical, thus no physical model can breach
this law given Maxwell’s electromagnetic theory. In [5], non-
uniform transfer matrices are studied leading to asymptotic
laws for various types of flows (e.g., asymmetric, multicast,
etc.). In [6], the case of a multihop wireless network aided by
infrastructure is considered; to switch to a better law, a quite
large number of base stations Ω

(√
N
)

is required.
In this study, we consider a modified delivery problem, with

nodes generating requests on particular content (i.e., files), as
opposed to particular destinations. Given the nodes’ caching



capability, files may exist in multiple nodes in the network;
hence, requests are not necessarily directed to unique nodes.
As usual, we assume a uniform distribution on the origin node
of the requests, but a non-uniform distribution on the requested
file. Then, we investigate if this delivery scenario is sustainable
in a flat wireless network (i.e., overcome the result of [2]).

Caching has been proposed in the past as a means to im-
prove wireless network performance. In [7], a caching scheme
for wireless networks is proposed; performance benefits are
shown thanks to minimization of wireless hops. In [8], caching
is employed in the Publish-Subscribe paradigm to preserve
information spatio-temporally and cover for link breakages and
mobility. Cooperative caching for wireless meshes has been
recently studied in [9] where it is demonstrated to improve
the actual performance by means of implementation.

Here, we are interested in exploring the extent of the benefit
of caching and whether its contribution to content delivery
makes a difference in large networks. A similar study on
scaling laws for caching in wireless networks can be found in
[10]: the authors consider the case where an arbitrary traffic
matrix is given and the information may be found in several
caches in the network. Then, they determine the maximum
rate of information that can be delivered to the destination. A
series of interesting results follow; due to the fact that nodes
must cooperatively guide the information to the destination,
as in [3], the optimal strategy is not shortest path routing.
Also, the network can become approximately sustainable in
the same way with [3] using an hierarchical tree structure of
transmissions over arbitrarily long links. However, it should be
stressed that the results of [3], [10] depend on the particular
signal attenuation parameters assumed.

In this study, we follow a different course from [3]: we fix a
square grid as the wireless topology, a well known model for
wireless networks [11]. In this flat topology, it remains unclear
whether caching helps making the system scalable. Moreover,
a second key difference in our approach is the fact that we
consider the replication problem as in [7]: the positions of the
files are part of the optimization problem, not pre-determined.
In this context, we obtain similar results to [7].

Last, on the file request distribution, we focus on the Zipf
law (as in [7]), as there exists ample evidence in the literature
[12], [13] that the file popularity in the Internet follows such
power laws. The Zipf parameter depends on the application,
ranging from 0.5 [14] to 3 [15]; low values match the file
distribution in routers, intermediate values in proxies and
higher values in mobile applications [16], [17]; more studies
exist in the literature and in the references of the above.

III. ASYMPTOTIC NOTATION

Let us define the notation used in the asymptotic laws that
follow. Let f and g be real functions. Then, f ∈ o(g) if

for any k > 0, there exists x◦ s. t. for x ≥ xo,
∣∣∣∣f(x)g(x)

∣∣∣∣ ≤ k.
Although o(g) defines a set of functions, it is customary to
write f = o(g) (slightly abusing notation), instead of f ∈ o(g).

Moreover, f = O(g), if there exists a k > 0 such that f(x)
is eventually, in absolute value, less or equal to kg(x), that is

there exist k > 0, xo > 0 s. t. for x ≥ xo,
∣∣∣∣f(x)g(x)

∣∣∣∣ ≤ k.
Using such a k, we can write that f

lim

≤ kg and f
lim

< k′g, if
f, g are positive functions and k′ > k.

Similarly, if the inequalities in the above definitions are
reversed, i.e., |f(x)/g(x)| ≥ k, then f = ω(g), or f = Ω(g),
respectively. In the latter case, using such a k, we can write
f

lim

≥ kg and f
lim

> k′g, if f, g are positive functions and k′ < k.
In the case that f

lim

≤ g and f
lim

≥ g, we write that f ∼ g.
Last, f = Θ (g) if f = Ω(g) and f = O(g).
An important consequence of the above is that f = O(g)

does not imply f
lim

< g—e.g., consider f(x) = 2g(x); however,
the reverse is true. Moreover, if f

lim

< g, then g − f = Θ(g).

IV. THE REPLICATION PROBLEM

Consider N nodes with N being a square of an integer,
arranged on a square lattice on the plane of size

√
N rows

times
√
N columns. Each node is connected to its four

immediate neighbors on the same row or column, creating
a flat grid topology. Keeping the node density fixed and
increasing N , the network scales as in [2]. Moreover, to avoid
boundary effects, we consider a toroidal structure [18].

This grid structure permits to consider the discrete nature
of the wireless nodes, unlike the average node/cache capacity
density of [7]. Unless nodes cooperate in their transmissions in
a complex scheme (e.g., [3], [10]), it is a reasonable topology
to consider, as wireless nodes have a limited communication
range due to path attenuation and interference. With a fre-
quency reuse factor appropriate to the physical layer, and/or a
TDMA scheme or a random access scheme at the MAC layer,
we can abstract away the network layer view to the lattice
graph, as in [11]. Moreover, this is a setup that essentially
captures the result of [2] for random communicating pairs.

Nodes (or users at the nodes) place requests on files/data,
indexed by m ∈ M , {1, 2, . . . ,M}. Each node is equipped
with a buffer/cache. A request generated on a node about a file
m stored in the node’s cache is directly served, without using
the network. Otherwise, the request is served from another
node that keeps m in its cache, generating network traffic.
Nodes are assumed alike, each having a cache of capacity K,
i.e., can store K files. This implies that all files are of equal
size (big files can be modeled as multiple indepedent unit-size
files). For the problem to have a solution, it should be

KN ≥M, (1)

otherwise the network has insufficient memory to store each
file at least once. Moreover, for the problem of replication not
to be trivial, it should be K < M : each node must make a
specific selection of files to buffer in its cache.

Let each node n ∈ N generate requests for files at a total
common rate of λ. Each request regards a particular data m ∈
M, depending on the file’s popularity pm. In essence, [pm] is



a probability distribution that dictates replication: to minimize
the network traffic, popular data should be stored densely.

From the Microscopic to Macroscopic View

In the above setup, we are interested in optimizating the
network operations. The subject is twofold and regards
B: the replication policy, which specifies the buffer

(cache) contents across all nodes, and
R: the routing policy, which specifies how requests of

any file m are routed in the network from any node
n to a node n′ that can serve the request for file m.

In our study, we estimate the rate C`(B,R) on link ` given
the replication and routing policies B and R. This rate sets the
minimum capacity of link ` required to sustain the resulting
traffic. Clearly, link rates C` are proportional to the request
rate λ. Hence, without loss of generality, in the rest of this
work, we assume that λ = 1. In contrast, in [2], a constant
link rate is assumed (e.g. C` = 1) and then, the maximum λ
is computed; this is essentially the inverse perspective.

The objective of the optimization problem is to find the joint
replication and routing policies B and R that minimize the
required link capacities C`(B,R). In particular, in the primary
formulation of the problem, we would like to consider the
worst case, that is the rate of the most loaded link:

PROBLEM 1 [WORST LINK]: CWL = min
B,R

max
`

C`(B,R).

Clearly, this problem is of combinatorial complexity, and
thus not amenable to an easy to compute solution. However,
as our focus is on the asymptotics, we state a set of gradually
simplifying problems; these lead to a straighforward replica-
tion strategy whose solution is within a constant to the WL
problem. Due to space limitations, this section provides a high-
level overview only (proofs can be found in [19]).

A first step is the Average Link Problem, focusing on the
average rate across network, as opposed to the worst case:

PROBLEM 2 [AVERAGE LINK]: CAL = min
B,R

avg
`
C`(B,R).

From the definition of the problems, it is clear that CAL ≤
CWL. Moreover, AL is an easier problem than WL (albeit still
of combinatorial complexity due to the selection of cache
contents at each node): shortest path routing to the nearest
node that holds file m suffices in AL (proof in [19]).

To further simplify the problem, we dispense with the N
individual buffer constraints at each node, and specify instead
a total cache capacity KN across the network. We can then
create new replication policies B with more than K files in
some nodes, and less than K files in other nodes. Defining

PROBLEM 3 [TOTAL CACHE (TC) CONSTRAINT]:
CTC = min

B,R
avg
`
C`(B,R),

it is CTC ≤ CAL, as any solution of AL satisfies TC, as well.
In the above problems, there is a ‘microscopic’ decision to

focus on the cache contents of every node. To eliminate the
combinatorial buffer configurations, we switch our attention
to the frequency of occurrence of each file m in the caches,

and define a macroscopic metric, the replication density dm
as the fraction of nodes that store file m. The inverse d−1m
corresponds, in a fluid approximation, to the number of nodes
served by a node that maintains m in its cache [7], or the
size of the area served by this node. Moreover, under shortest
path routing, the number of hops required from a node n to
reach a cache containing file m can be shown to be on average
kCD

(
1√
dm
− 1
)

, with kCD =
√
2/6 for the lattice topology.

Note that in all previous problems, dm is a number k/N ,
with k a positive integer up to N , and moreover

∑
m∈M dm ≤

K. We can then define an abstract problem regarding the
densities of the data m instead of the cache contents:

PROBLEM 4 [CONTINUOUS DENSITY]:

CCD = min
[dm]

∑
m∈M

kCD

(
1√
dm
− 1

)
pm, subject to:

1) For any m ∈M, 1
N ≤ dm ≤ 1,

2)
∑
m∈M dm ≤ K.

Any solution of the previous problems results in a density
vector [dm] that satisfies CD Problem constraints. Therefore,

CCD ≤ CTC ≤ CAL ≤ CWL.

In other words, the CD problem establishes a lower bound
on the WL. Moreover, there exist positive kWL and k′WL, such
that we can always map a density vector [dm] satisfying the
CD problem to a (not necessarily optimal) buffer and routing
policy of the WL, whose worst link rate is up to kWLCCD+k

′
WL

(proof in [19]). Thus, CWL ≤ kWLCCD + k′WL. Although k′WL is a
function of M , overall CWL = O(CCD), thus, for the asymptotic
laws, it suffices to consider the CD problem only.

Note that [7] studies a problem of the same optimization
target in a more relaxed topology than the lattice, without
considering the discrete nodes and the associated constraints
on the values of each dm; as seen next, these play a major role
in the asymptotics of the various τ and M vs. N regimes.

V. SOLUTION OF THE REPLICATION PROBLEM

The CD Problem is a monotropic optimization problem with
a nonlinear objective function and linear constraints. To find
the solution, we have to consider 2M+1 Lagrange multipliers,
and carry out a search on the binding constraints. The result
partitions the set of files into three subsets (proof in [19]):
M

�

= {1, 2, . . . , l − 1} contains files of unit replication
density dm = 1 (i.e., to be stored to every node)

M
�
= {l, l + 1, . . . , r − 1} contains files stored multiple

times, but not everywhere ( 1
N < dm < 1),

M � = {r, r+1, . . . ,M} contains files stored once, dm = 1
N ,

where l and r index the first file ofM
�

andM� , respectively,
for the files ordered in decreasing popularity, as in (3), as
illustrated in Fig. 1. Then, the densities of the files are

dm =


1, m ∈M

�

, (2a)(
K−l+1−M−r+1

N

)
p

2
3
m∑r−1

j=l p
2
3
j

, m ∈M
�
, (2b)

1

N
, m ∈M� . (2c)
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Fig. 1. An example case of density dm and theM

�
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�

andM� partitions.

The following result (see [19] for its proof) establishes the
uniqueness of indices l, r and sets M

�

,M
�
,M� :

THEOREM 1 [UNIQUENESS]: The indices (l, r) of the opti-
mal solution of the CD problem are unique. Moreover, it is not
possible to decrease l or increase r given the optimal form (2)
without violating the constraints 1

N ≤ dm ≤ 1.

A. Zipf Law and Approximations

We consider the Zipf law for file popularity as follows:

pm =
m−τ∑M
m=1m

−τ
=

m−τ

Hτ (M)
, (3)

where τ is the power law parameter, indicating the rate of pop-
ularity decline as m increases. Moreover, Hτ (n) ,

∑n
j=1 j

−τ

is the truncated (at n) zeta function evaluated at τ (also
called the nth τ -order generalized harmonic number). The
limit Hτ , lim

n→∞
Hτ (n) is the Riemann zeta function, which

converges when τ > 1. We derive an approximation for Hτ (n)
by bounding the sum by two integrals; for n ≥ m ≥ 0, it is∫ n

m

(x+ 1)−τdx ≤ Hτ (n)−Hτ (m) ≤ 1 +

∫ n

m+1

x−τdx,⇒{
(n+1)1−τ−(m+1)1−τ

1−τ ≤Hτ (n)−Hτ (m)≤ n1−τ−(m+1)1−τ

1−τ +1, if τ 6=1,

ln n+1
m+1≤Hτ (n)−Hτ (m)≤ ln n+1

m+2 , if τ=1.

(4)

B. Basic Properties of the Solution

As we are interested in the asymptotic scaling of link rates,
for notational simplicity, we remove the kCD factor and refer to
the resulting quantity as C. Substituting the solution (2) and
the Zipf distribution (3) into the objective function,

C =
∑
m∈M

(
1√
dm
− 1

)
pm = C

�
+ C � −

M∑
j=l

pm, (5)

where

C
�
,
∑
m∈M

�

pm√
dm

(3)
=

[
H 2τ

3
(r − 1)−H 2τ

3
(l − 1)

] 3
2√

K
�
Hτ (M)

, (6)

C � ,
∑

m∈M �

pm√
dm

(3)
=
√
N

Hτ (M)−Hτ (r − 1)

Hτ (M)
, (7)

K
�
,

(K − l + 1)N − (M − r + 1)

N
. (8)

Note that
∑M
j=l pm = O(1), as it lies always in [0, 1].

C. Estimation of l and r

As indices l, r are not provided in a closed form, we have
to derive suitable approximations to study the scaling of C.

1) Estimation of l: note that l ≤ K + 1 (hence l = Θ(1)),
as l − 1 is the number of files replicated in all nodes. If M

�

and M� are not empty, using (2b), dl < 1 is equivalent to

K−l+1− M−r+1

N
< l

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
. (9)

If, moreover, the first set M � is not empty, i.e., l > 1, then
dl−1 = 1. This means that if we attempted to decrease index
l by 1, this would violate the density constraints (Theorem 1),
and get from (2b) a number greater than 1 for dl−1:

K−l−M−r+1

N
≥ (l−1)

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−2)

]
. (10)

Thus, provided l > 1, it can be uniquely determined
as the lowest integer that satifisfies (9-10), which is unique
(Theorem 1). An approximation for l can be computed treating
(9) as an approximate equality when M

�
6= ∅, or equivalently

when l < r (as dl−1 = 1 and dl < 1):

K−l+1− M−r+1

N
∼= l

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
. (11)

2) Estimation of r: IfM
�
∪M

�

is not empty, dr−1 > 1
N ⇔

(K−l+1)N−M+r−1 >(r−1) 2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
.

(12)
Again, if the third set M� is not empty, i.e., r ≤ M , it is

dr = 1/N . Thus, if we attempted increasing index r by one,
(2b) would yield a density less than 1/N (Theorem 1):

(K−l+1)N−M+r ≤ r 2τ
3

[
H 2τ

3
(r)−H 2τ

3
(l−1)

]
. (13)

As before, (12) is an approximate equality if l < r, i.e.,

(K−l+1)N−M+r−1 ∼= (r−1) 2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
.

(14)

3) Estimation of l/r: For all l, r, it is N > dl
dr−1

=
(
r−1
l

)2τ
3 .

In the spirit of the previous analyses, whenever both l and r
are not equal to the extremes, i.e., 1 < l < r < M + 1, the
ratio dl−1/dr = N holds also true. Thus,

l ∼=
r

N
3
2τ

. (15)

The proof of all the following results can be found in the
Appendix. The following Lemma shows that it is impossible
to have files cached in all nodes unless the file popularity
parameter τ is greater than 3

2 :

LEMMA 2: If τ ≤ 3
2 , then l→ 1.



VI. ASYMPTOTIC LAWS

We proceed in studying the asymptotic behavior of the
system regarding the link rate C, as well as indices l and
r, which govern the size of partitions M

�

,M
�

and M� . The
derived asymptotic laws regard the scaling when the number
of nodes N and the number of files M increase to infinity.
We use l̂ and r̂ to refer to the limits of l and r.

First, we provide a set of basic results that establish the
upper bound of C equal to O

(√
N
)

. This is the Gupta-
Kumar rate [2], a result intuitively expected: if replication is
ineffective (e.g., due to large number of files), then the system
essentially reduces to [2], matching its performance.

LEMMA 3 [BOUND ON C
�
]: C

�
= O

(√
N
)

.

LEMMA 4 [BOUNDS ON C � ]: C� = O
(√

N
)

. Furthermore,

1) for τ < 1, and r
lim

< M , it is C � = Θ
(√

N
)

,

2) for τ > 1, it is C� = Θ
(√

N
(
r1−τ−M1−τ)).

If, moreover, r
lim

< M , then C� = Θ
( √

N
rτ−1

)
.

COROLLARY 5 [BOUND ON C]: C=O
(√
N
)

.

Next, we start the analysis by partitioning the space of M,N
on whether they produce single replicated files or not.

A. Almost Empty M�

The first case to consider is when the number of nodes N
and files M increase towards infinity, and at the same time
M � remains an almost empty set. We define formally M� to
be almost empty, through |M� | = o(M), i.e., the number of
its elements is of lower order than the total files. For this to
happen, M should increase at a slow pace with N , so that
the constraint dm ≥ 1/N is satisfied for almost all files, or
equivalently dm = 1/N for o(M) files. The extreme case of
this is to first let N → ∞ and then M → ∞, i.e., split the
limit of N,M jointly going to infinity to a double limit.

To study the asymptotics of C, we first estimate l and r.
The almost empty M� implies that |M � | = M − r = o(M),
and thus r ∼M (i.e., as r/M → 1).

THEOREM 6 [l̂ FOR ALMOST EMPTYM� ]:
1) For τ ≤ 3

2 , l→ 1.
2) For τ > 3

2 , l → l̂{τ> 3
2 ,M� ≈∅}, where l̂{τ> 3

2 ,M � ≈∅} is
the integer solution of{

(K − l + 1)l−
2τ
3 < H 2τ

3
−H 2τ

3
(l − 1),

(K − l)(l − 1)−
2τ
3 ≥ H 2τ

3
−H 2τ

3
(l − 2),

(16)

if such exists and is greater than 1, or 1 otherwise.

An approximation of (16) for K � 1 is the following:

K − (l − 1) ∼= (l − 1)
[
H 2τ

3
−H 2τ

3
(l − 1)

] (4)∼= l−1
2τ
3 −1

⇔

l ∼= 1 +
2τ − 3

2τ
K. (17)

Next, we find the conditions so that M� is almost empty:

THEOREM 7 [M� ALMOST EMPTY]: It is M − r = o(M) iff
M

lim

≤
(
1− 2τ

3

)
KN, if τ < 3

2 ,

M lnM
lim

≤ KN, if τ = 3
2 ,

M
lim

≤
[
(K−l̂+1)( 2τ

3 −1)
l̂1−

2τ
3

] 3
2τ

N
3
2τ , if τ > 3

2 .

where l̂ = l̂{τ> 3
2 ,M� =∅} from Theorem 6. If the above

inequalities are strict, then r =M + 1 (and thus M� = ∅).

THEOREM 8 [CAPACITY FOR ALMOST EMPTYM� ]:

C =



Θ
(√

M
)

, if τ < 1,

Θ
( √

M
logM

)
, if τ = 1,

Θ
(
M

3
2−τ

)
, if 1 < τ < 3

2 ,

Θ
(
(logM)

3
2

)
, if τ = 3

2 ,

Θ (1) , if τ > 3
2 .

B. Non-empty M�

When M � is non-empty, it is C� > 0. As Corollary 5 shows,

C is O
(√

N
)

, i.e., the Gupta-Kumar rate [2]. Thus, we turn

our attention to identifying the cases that C = o
(√

N
)

.

THEOREM 9 [l̂ AND r̂ FOR NON-EMPTYM� ]: If M exceeds
the condition of Theorem 6,
• if KN−M = ω(1), then we discern the following cases:

τ <
3

2
: l→ 1, r ∼ 3− 2τ

2τ
(KN −M), (18)

τ =
3

2
: l→ 1, r ln r ∼ KN −M, (19)

τ >
3

2
and M

lim

≤ (K − β)N :

l→ l̂ ∼= α

[
K + 1− lim

M

N

]
, (20)

r ∼ α
[
KN

3
2τ − M

N1− 3
2τ

]
. (21)

τ >
3

2
and M

lim

> (K − β)N :

l→ 1, r ∼
[
2τ

3
(KN −M)

] 3
2τ

(22)

where α = 2τ−3
2τ , β = 3

2τ−3 .
• if KN −M = O(1), then l → 1, r = Θ(1), with the

exact value determined by{
KN−M+r−1 > (r−1) 2τ

3 H 2τ
3
(r−1),

KN−M+r ≤ r 2τ
3 H 2τ

3
(r).

(23)

Note that the approximation of (20) on l̂ can be precisely
carried out via (16), if we substitute K with K − limM/N .



TABLE I

(a) The Cases of τ < 1, τ = 1 and 1 < τ < 3
2

.

M M finite N →∞ then
M

lim

≤ 3−2τ
2τ

KN
M

lim
> 3−2τ

2τ
KN M ∼ KN

M →∞ and M
lim
< KN KN−M = ω(1) KN−M = O(1)

M � empty empty almost empty non-empty non-empty non-empty

l̂ 1 1 1 1 1 1

r̂ M + 1 M + 1 M − o(M) 3−2τ
2τ

(KN −M) 3−2τ
2τ

(KN −M) Θ(1) (23)

C

τ < 1 Θ(1) Θ
(√

M
)

Θ
(√

M
)

Θ
(√

M
)

Θ
(√

M
)

Θ
(√

M
)

τ = 1 Θ(1) Θ
( √

M
logM

)
Θ
( √

M
logM

)
Θ
( √

M
logM

)
Θ
(√

M
)

Θ
(√

M
)

1 < τ < 3
2

Θ(1) Θ
(
M

3
2
−τ
)

Θ
(
M

3
2
−τ
)

Θ
(
M

3
2
−τ
)

Θ
( √

M
(KN−M)τ−1

)
Θ
(√

M
)

(b) The Case of τ = 3
2

.

M M finite N →∞ then
M lnM

lim

≤ KN M lnM
lim
> KN and M

lim
< KN

M ∼ KN
M →∞ KN −M = ω(1) KN −M = O(1)

M� empty empty almost empty non-empty non-empty non-empty

l̂ 1 1 1 1 1 1

r̂ M + 1 M + 1 M − o(M) r ln r ∼ KN −M r ln r ∼ KN −M Θ(1) (23)

C Θ(1) Θ
(
(logM)

3
2

)
Θ
(
(logM)

3
2

)
Θ
(
(log r)

3
2

)
Θ
(√

M
KN−M (log r)

3
2

)
Θ
(√

M
)

(c) The Case of τ > 3
2

.

M M finite N →∞ then M
lim

≤ hN
3
2τ M

lim
> hN

3
2τ and M

lim
> (K − β)N M ∼ KN

M →∞ (see Theorem 7) M
lim

≤ (K − β)N and M
lim
< KN KN−M = ω(1) KN−M = O(1)

M � empty empty almost empty non-empty non-empty non-empty non-empty

l̂ Θ(1) (16) Θ(1) (16) Θ(1) (16) ∼= α
[
K+1−lim M

N

]
1 1 1

r̂ M + 1 M + 1 M − o(M) ∼α
[
KN

3
2τ− M

N
1− 3

2τ

]
∼
[
2τ
3
(KN−M)

] 3
2τ ∼

[
2τ
3
(KN−M)

] 3
2τ Θ(1) (23)

C Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ

(
√
M

(KN−M)
3(τ−1)

2τ

)
Θ
(√

M
)

THEOREM 10 [CAPACITY FOR M
lim

< KN ,M� 6= ∅]:

C =



Θ
(√

M
)
, if τ < 1,

Θ
( √

M
logM

)
, if τ = 1,

Θ
(
M

3
2−τ

)
, if 1 < τ < 3

2 ,

Θ
(
(log r)

3
2

)
, if τ = 3

2 ,

Θ(1), if τ > 3
2 .

THEOREM 11 [CAPACITY FOR M ∼ KN ,M � 6= ∅]:

C =



Θ
(√

M
)
, if τ ≤ 1,

Θ
( √

M
(KN−M)τ−1

)
, if 1 < τ < 3

2 ,

Θ
(√

M
KN−M (log r)

3
2

)
, if τ = 3

2 ,

Θ

( √
M

(KN−M)
3(τ−1)

2τ

)
, if τ > 3

2 .

C. Discussion on Asymptotic Laws

Table I summarizes the above results. C, the main result,
is the minimum required link rate so as to be able to sustain
a request rate λ = 1 from each node. Clearly, for the cases

that C scales to infinity, as it is not possible to increase the
link capacity to an arbitrary value, one should interpret the
reported C as the inverse of the maximum sustainable request
rate λ, e.g. the result of C = Θ

(
(logM)

3
2

)
with λ = 1 is

equivalent to C = 1 with λ = Θ
(
(logM)

− 3
2

)
.

Regarding τ , note that there are two phase transition values,
1 and 3/2, which lead to different scaling laws. The higher τ
is, the higher the differentiation in the popularity of files, and
thus, the better caching works, resulting in high performance
(i.e. low link rate C). For example, for τ > 3

2 and M ≤ δN ,
with δ < K, it is C = Θ(1), meaning that the wireless
network is indeed sustainable. Nevertheless, such a high τ
distribution parameter is expected to appear only in cases
that content is created from a particular service, e.g., mobile
applications, as discussed in Section II.

In contrast, low values of τ (as in Internet traffic) flatten file
popularity (i.e., τ = 0 corresponds to the uniform distribution):
then, replication cannot really help; we end up to Θ

(√
M
)

,
which is essentially the Gupta-Kumar link rates if we associate
M , the number of files in our model, to N the number of



communicating pairs in [2]. If M scales slower than N , then
we get an improvement over [2], which however is attributed
to the particular flow model and not to the effect of caching.

On the other hand, note that the case of M being a fraction
of the total cache capacity KN , (e.g. M ≤ δKN , with δ
sufficiently small) is a reasonable regime if we make the
following interpretation: each node brings to the network its
own files and has enough spare capacity to cache files from
other nodes. In such a case, M is the same order with N and,
thus, the flow model is a fair comparison to [2]. The value of
the multiplicative constant , however, dictates the behavior of
the set M� (from Theorem 7), and, consequently, the scaling

law of C: Θ
(√

M
)

for τ < 1, Θ
(
M

3
2−τ
)

for 1 < τ < 3
2 , or

Θ(1) for τ > 3
2 , with the improvement here being attributed

to the effect of finite caching. Finally, when the ratio of M
over KN approximates 1, then there is little spare capacity for
replication, therefore C in the last two columns of the tables
essentially matches the Gupta-Kumar rate of Θ

(√
M
)

.

VII. CONCLUSIONS & FUTURE WORK

In this paper, we investigated on the scaling properties in
wireless networks with caching. In particular, we considered
a square lattice topology, and derived the asymptotic laws
of how link capacity scales up when request rate is constant
(or inversely, how request rate should scale down when link
capacity is constant) with the number of files M and number
of nodes N . Our study shows that the file popularity parameter
τ is the key factor on the impact of caching in the wireless
network. An extended upcoming version of this work will
include a new dimension of scaling with node capacity K;
that is, in an evolving network, the amount of memory per
node is envisaged to increase along with size of the network
and the number of files in it. In such a setup, it is expected that
caching can be beneficial even for low values of τ provided
that cache capacity K scales sufficiently fast with the files M .
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APPENDIX

Proof of Lemma 2: If we assume that in the limit l > 1,
then we have two cases for r: r →∞, or r = O(1).

In the first case, r → ∞ and τ ≤ 3
2 lead to H 2τ

3
(r − 1)

diverging to infinity in (11). However, the rest of the terms in
(11) are bounded (as l ≤ K). Therefore, in the limit, (11) is
a contradiction. Thus, it has to be either M

�
= ∅, or l = 1.

As r → ∞ and l ≤ K + 1, it cannot be M
�
= ∅. Therefore,

if r →∞ it is l = 1 (i.e., dl 6∼= 1 as assumed).

If, on the other hand, r = O(1), then (15) is a contradiction
for l > 1 in the limit. Thus, l→ 1.

Proof of Lemma 3: Follows from the summation definition
of (6): observe that dm > 1

N and
∑
m∈M

�

pm ≤ 1.

Proof of Lemma 4: For τ < 1, C� = Θ
(√

N
)

follows from
(7) and the fact that Hτ (M)−Hτ (r) = Θ (Hτ (M)) from (4).
The latter comes from Hτ (M) diverging and r

lim

< M .
For τ > 1, it is C�

(4)
= Θ

(√
N
[
r1−τ−M1−τ]). If r

lim

< M ,

too, then M1−τ lim

< r1−τ , hence C � = Θ
( √

N
rτ−1

)
.

Proof of Theorem 6: Case τ ≤ 3
2 : From Lemma 2, l→ 1.

Case τ > 3
2 : Examining what happens in (9-10) in the limit,

we observe that r →∞, hence H 2τ
3
(r−1)→ H 2τ

3
. Assuming

a limit l→ l̂{τ> 3
2 ,M≈∅}

, (9-10) lead to (16); the latter can be
shown (as in Theorem 1) to have a unique solution.

Proof of Theorem 7: By the definition of M� almost empty,
it is M − r+ 1 = o(M), and given the constraint of (1), it is
M = O(N), thus M − r+ 1 = o(N) = o((K − l+ 1)N), as
K − l + 1 ≥ 1 in all cases from Theorem 6.

From the last element of M
�
, we have that dr−1 > 1

N .
Substituting dr−1 in the latter from (2b), and taking the limit

(K−l+1)N > (r−1) 2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
, (24)

where we used M −r+1 = o((K− l+1)N) to eliminate the
respective term from the LHS. Next, we use (4) to approximate
the Riemann terms and substitute l from Theorem 6:
Case 0 < τ < 3

2 : l→ 1, thus (24) becomes

KN
lim

≥ (r−1) 2τ
3

(r−1)1−
2τ
3 −1

1− 2τ
3

= r−1−(r−1)
2τ
3

1− 2τ
3

.

As 2τ/3 < 1, it is (r−1)
2τ
3 = o (r−1). Hence, the above

is equivalent in the limit to (r−1)
lim

≤ K
(
1− 2τ

3

)
N , or, as

r = Θ(M), M
lim

≤ K
(
1− 2τ

3

)
N.

Case τ = 3
2 : l→ 1, thus KN

lim

≥ (r−1) [ln(r−1)− ln l] .

Using that ln l = o(ln(r−1)), we get (r−1) ln(r−1)
lim

≤ KN ;

as r = Θ(M), the condition becomes M lnM
lim

≤ KN .
Case τ > 3

2 :

(K− l̂+1)N
lim

≥ (r−1) 2τ
3
l̂1−

2τ
3−(r−1)1−

2τ
3

2τ
3 −1

= l̂1−
2τ
3 (r−1)

2τ
3−(r−1)

2τ
3 −1

.

Now, it is 2τ/3 > 1, hence (r−1) = o
(
(r−1) 2τ

3

)
; then, the

above becomes (r−1)
lim

≤
[
(K−l̂+1)( 2τ

3 −1)
l̂1−

2τ
3

N

] 3
2τ

. Substituting

r − 1 with M , the condition follows.
Last, observe that in the above derivations, if we started

with dM > 1/N , then we would find the conditions for M�

being strictly empty, i.e. r = M + 1. As easily seen, this is
true if the conditions are satisfied with strict inequality.

Proof of Theorem 8: To find C, we compute C
�

and
C � from their definitions (6-7), and show that in all cases

C � = O
(
C

�

)
. Thus, C = Θ

(
C

�

)
. In the computation of C� ,



r ∼M helps in deriving that

Hτ (M)−Hτ (r − 1) =
∑M
j=r j

−τ = Θ(M−τ (M − r)) .

Theorem 6 and M − r = o(M) result in K
�
= Θ(1) for all τ .

Case τ < 1: Regarding C
�
, H 2τ

3
(r + 1) and Hτ (M) diverge,

while H 2τ
3
(l − 1) is bounded (as l ≤ K + 1). Thus,

C
�
= Θ

( [
M1− 2τ

3 −1
] 3

2

M1−τ−1

)
= Θ

(√
M
)
.

If the condition of Theorem 7 is a strict inequality, then
C � = 0. If it is an equality, it is M = Θ(N). Then,

C � =
√
N

∑M
j=r j

−τ

Hτ (M)

(4)
= Θ

(√
N M−τ (M−r)

M1−τ

)
M=Θ(N)

= o
(√
M
)

.

Case τ = 1: In C
�
, H 2τ

3
(M) and Hτ (M) diverge, while

H 2τ
3
(l−1) is bounded. Thus, C

�
= Θ

([
M

1
3−1

] 3
2

logM

)
= Θ

( √
M

logM

)
.

As before, if the condition of Theorem 7 is a strict inequality,
then C� = 0. If it is an equality, it is M = Θ(N). Then,

C � =
√
N

∑M
j=r j

−1

Hτ (M) = Θ
(√
N M−1(M−r)

logM

)
M=Θ(N)

= o
( √

M
logM

)
.

Case 1 < τ < 3
2 : Regarding C

�
, only H 2τ

3
(M) diverges,

while the rest of the terms converge. Then, the order of C
�

is
determined from

H
3
2
2τ
3

(M) ∼
[
M1− 2τ

3 −1
1− 2τ

3

] 3
2

= Θ
(
M

3
2−τ
)
.

If the condition of Theorem 7 is a strict inequality, then
C � = 0. Otherwise, it is an equality, thus M = Θ(N), and

C � =
√
N

∑M
j=rj

−τ

Hτ (M)

(4)
=Θ

(√
NM−τ (M−r)

)
M=Θ(N)

= o
(
M

3
2−τ
)
.

Case τ = 3
2 : C

�
= Θ

(
(logM)

3
2

)
due to the numerator, all

other terms converge. If the condition of Theorem 7 is a strict
inequality, C � = 0. Otherwise, it is an equality with M =

Θ(N), and given that 1 < τ < 3
2 , C � = Θ

(√
N M−r

M
3
2

)
=

Θ
(
M−r
M

)
= o(1). In total, C = Θ

(
(logM)

3
2

)
.

Case τ > 3
2 : All terms converge in (6), thus C

�
= O(1).

If the condition of Theorem 7 is a strict inequality, C � = 0.

Otherwise, it is an equality with M = Θ
(
N

3
2τ

)
. Then, C � =

Θ
(√

N M−r
Mτ

)
= Θ

(
M−r
M

2τ
3

)
= o(1). In total, C = O(1).

Proof of Theorem 9: In the second case of KN−M = O(1),
observe that KN −M is the number of places that remain
after storing the M files once in the network. It is easy to
see that r ≤ KN −M , thus r = O(1). As both r and l are
bounded, (15) cannot be true, therefore l̂ = 1. Hence, r is
estimated from (12), (13); substituting l→ 1, (23) follows.

For the first part where KN−M = ω(1), we first note that
r = O(N), as r ≤M , and M = O(N), due to (1).

Case τ < 3
2 : From Lemma 2, l → l̂ = 1. Using this along

with (4) in (14), we can estimate r:

KN−M+r−1 ∼= (r−1) 2τ
3
r1−

2τ
3 − 1

1− 2τ
3

Observe that assuming r = O(1), the above results becomes
a contradiction, as NK −M = ω(1), whereas all the other
terms are O(1). Therefore, it is r = ω(1), and (18) follows.
Case τ = 3

2 : From Lemma 2, l → l̂ = 1. Working as before,
(14) in view of (4) gives that NK−M + r−1 ∼= (r−1) ln r.
Clearly, r = ω(1), thus, r ln r ∼ KN −M .
Case τ > 3

2 : First, let us assume that l̂ > 1, and use (11),
which using (4) is approximated by

K−l+1−M−r+1

N
∼= l

2τ
3
l1−

2τ
3 −r1−2τ

3

2τ
3 − 1

∼=
l − l 2τ3 r1−2τ

3

2τ
3 − 1

⇒

K−l+1−M
N

+
l

N1− 3
2τ

∼= l
1− 1

N1− 3
2τ

2τ
3 − 1

,

where in the last step we used (15) to substitute r ∼= lN
3
2τ .

For N →∞, it is N1− 3
2τ →∞, and the above becomes

l̂ ∼=
2τ − 3

2τ

(
K + 1− lim

M

N

)
.

Thus, the assumption of l̂ > 1 is correct if K, limM/N
and τ are such that the second factor of RHS is approximately
exceeds 1, that is M

lim

≤
(
K − 3

2τ−3

)
N. Then, from (15), r is:

r ∼ 2τ − 3

2τ

[
(K + 1)N

3
2τ − M

N1− 3
2τ

]
.

Otherwise, l̂ = 1, and r is computed from (14) using (4)

NK−M+r−1 ∼= (r−1) 2τ
3

1−r1−
2τ
3

2τ
3 −1

.

As N →∞, it follows that r ∼
[
2τ−3

3 (KN −M)
] 3

2τ.

Proof of Theorem 10: First note that from Theorem 9, for
all τ , it is K

�
= Θ

(
KN−M+r̂−1

N

)
= Θ(1) (using M

lim

< KN ).

In the cases of τ < 3
2 ,M� 6= ∅ entails M

lim

> K
(
1− 2τ

3

)
N

(Theorem 7). It is also M
lim

< KN , thus, M = Θ(N).
Furthermore, from Theorem 9 and M

lim

< KN , it is

r ∼ 3− 2τ

2τ
(KN −M) + 1

M
lim
<KN
= Θ(N), and, moreover,

r
lim

<
3−2τ
2τ

2τ

3
KN =

(
1− 2τ

3

)
KN

lim

< M. (25)

Then, we compute the link rate as follows:
Case τ < 1: Using Lemma 4, it is C � = Θ

(√
N
)

. Invoking

Lemma 3, too, we get that C = Θ
(√

N
)
= Θ

(√
M
)

.

Case τ = 1: C� =
√
N H1(M)−H1(r)

H1(M)

(4)∼
√
N

ln M
r

lnM = Θ
( √

M
logM

)
,

using r = Θ(N) = Θ(M). Similarly, as l → 1, C
�
=

Θ

 H
3
2
2
3

(r−1)√
K

�
H1(M)

 = Θ
( √

N
logN

)
. In total, C = Θ

( √
M

logM

)
.

Case 1 < τ < 3
2 : Using r = Θ(N) = Θ(M),



C � =
√
N

Hτ (M)−Hτ (r)

Hτ (M)

(4)∼
√
M

rτ−1

[
1−
( r

M

)τ−1]
,

which is C� = O
(
M

3
2−τ

)
from (25). Last, l→ 1 implies that

C
�
∼

H
3
2
2τ
3

(r−1)√
K

�
Hτ (M)

= Θ
(
M

3
2−τ

)
. In total, C = Θ

(
M

3
2−τ

)
.

Case τ = 3
2 : Now, it has to be M lnM

lim

> KN , which also
implies that M logM = Ω(N). From Theorem 9, we have
that r ln r ∼ KN −M . This means that r log r = Θ(N) in
view of M

lim

< KN , and thus r = o(N).
Moreover, comparing M lnM and r ln r in the above for-

mulas, it has to be r
lim

< M . The latter implies that there exists
a 0 < k < 1 such that eventually r

M ≤ k. Using then (7),

C �

(4)
= Θ

(
N

1
2

[
1

r
1
2

− 1

M
1
2

])
[ rM ]

1
2≤
√
k

= Θ

(√
N

r

)

= Θ

(√
N

KN −M
log r

)
NK−M=Θ(N)

= Θ
(√

log r
)
.

Moreover, as l→ 1, C
�
= Θ

 H
3
2
1 (r)√

K
�
H 3

2
(M)

 = Θ
(
(log r)

3
2

)
.

Thus, in total C = Θ
(
(log r)

3
2

)
.

Case τ > 3
2 : it is r = Θ

(
N

3
2τ

)
due to M

lim

< KN . Moreover,

as for M� 6= ∅, it has to be M = Ω
(
N

3
2τ

)
for M� . Then,

C � =
√
N
Hτ (M)−Hτ (r − 1)

Hτ (M)
= O

(
N

1
2 r1−τ

)
= O

(
N

1
2+

3
2τ (1−τ)

)
= O

(
N

3
2τ−1

)
= O(1).

Last, C
�
= Θ(1) (all terms converge). Thus, C = Θ(1).

Proof of Theorem 11: In all the cases, we know that r ≤
KN − M + 1, as KN − M is the number of spaces left
for duplicate copies after all M files are stored once. Hence,
r = O(KN −M) = o(N) = o(M). Moreover, as before, in
all cases, K

�
= Θ

(
KN−M+r−1

N

)
= Θ

(
K − M

N

)
.

Case τ ≤ 1: From Lemma 4, r = ω(M) implies that C� =

Θ
(√

N
)

. Hence, invoking Lemma 3, C
M=Θ(N)

= Θ
(√

M
)

.

For the rest of the cases with τ > 1, it is r = o(M),
therefore, from Lemma 4, we get that C� = Θ

( √
N

rτ−1

)
.

Case 1 < τ < 3
2 : Using r = Θ(KN −M) from Theorem 9,

C � = Θ
( √

N
(KN−M)τ−1

)
. On the other hand, l→ 1, and thus

C� =
H

3
2
2τ
3

(r−1)√
K

�
Hτ (M)

= Θ
(√

N
KN−M r

3
2−τ

)
= O

( √
N

(KN−M)τ−1

)
.

In total, C
M=Θ(N)

= Θ
( √

M
(KN−M)τ−1

)
.

Case τ = 3
2 : From the above, C � = Θ

(√
N
r

)
. Moreover,

C
�
=

H
3
2
1 (r−1)√
K

�
H 3

2
(M)

= Θ
(√

N
KN−M log

3
2 r
)
.

However, 1
r = log r

r log r = Θ
(

log r
KN−M

)
= o

(
log3 r
KN−M

)
, thus

C � = o(C
�
). In total, C

M=Θ(N)
= Θ

(√
M

KN−M log
3
2 r
)

.

Case τ > 3
2 : From Theorem 9, r = Θ

(
(KN −M)

3
2τ

)
=

o(KN − M) = o(M). Thus, C � = Θ

( √
N

(KN−M)
3
2
τ−1
τ

)
.

Moreover, C
�
= Θ

(
K
− 1

2
�

)
= Θ

(√
N

KN−M

)
(the H-terms

converge). As 3(τ−1)
2τ > 1

2 , it is C
M=Θ(N)

= Θ
(√

M
KN−M

)
.
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wireless and mobile systems, Montréal, Quebec, Canada, Oct. 2005, pp.
79–86.

[8] V. Sourlas, G. S. Paschos, P. Flegkas, and L. Tassiulas, “Mobility support
through caching in content-based publish-subscribe networks,” in Proc.
of 5th International workshop on content delivery networks (CDN 2010),
Melbourne, Australia, May 2010, pp. 715–720.

[9] J. Zhao, P. Zhang, G. Cao, and C. R. Das, “Cooperative caching in
wireless p2p networks: Design, implementation, and evaluation,” IEEE
Trans. Parallel Distrib. Syst., vol. 21, pp. 229–241, Feb. 2010.

[10] U. Niesen, D. Shah, and G. Wornell, “Caching in wireless networks,”
in IEEE International Symposium on Information Theory, Seoul, Korea,
Jun. 2009, pp. 2111–2115.

[11] J. Silvester and L. Kleinrock, “On the capacity of multihop slotted aloha
networks with regular structure,” IEEE Trans. Commun., vol. 31, pp.
974–982, Aug. 1983.

[12] M. E. J. Newman, “Power laws, pareto distributions and Zipf’s law,”
Contemporary Physics, vol. 46, pp. 323–351, Sep./Oct. 2005.

[13] L. A. Adamic and B. A. Huberman, “Zipf’s law and the Internet,”
Glottometrics, vol. 3, pp. 143–150, 2002.

[14] J. Chu, K. Labonte, and B. N. Levine, “Availability and popularity
measurements of peer-to-peer file systems,” in Proceedings of SPIE,
Boston, MA, USA, Jul. 2002.

[15] T. Yamakami, “A Zipf-like distribution of popularity and hits in the
mobile web pages with short life time,” in Proc. of Parallel and
Distributed Computing, Applications and Technologies, PDCAT ’06,
Taipei, ROC, Dec. 2006, pp. 240–243.

[16] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
caching and Zipf-like distributions: Evidence and implications,” in Proc.
of INFOCOM, New York, NY, USA, Mar. 1999, pp. 126–134.

[17] C. R. Cunha, A. Bestavros, and M. E. Crovella, “Characteristics of
WWW Client-based Traces,” in View on NCSTRL, Boston University,
MA, USA, Jul. 1995.

[18] M. Franceschetti and R. Meester, Random Networks for Communication.
New York, NY, USA: Cambridge University Press, Series: Cambridge
Series in Statistical and Probabilistic Mathematics (No. 24), 2007.

[19] S. Gitzenis, G. S. Paschos, and L. Tassiulas, “Asymptotic Laws for Joint
Content Replication and Delivery in Wireless Networks,” in arxiv.org
on-line repository, Jan. 2012.


