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Abstract—We study the problem of Wireless Network Coding
with imperfect overhearing, a joint coding/scheduling problem
that arises naturally in multihop wireless networks and relates to
multiple unicasts and intersession network coding. We show that
the problem can be mapped to specific instances of index coding.
In this direction, we provide a model that decouples the problem
of scheduling and coding and ultimately results in comparison of
different policies for evacuating packets from the system. Using
this framework, we propose a heuristic approach that is based on
rank minimization approaches proposed in the literature. We show
that the proposed heuristic outperforms powerful schemes of the
past like Random Linear Network Coding (RLNC) and COPE-like
greedy Immediately Decodable Network Codes (IDNC).

I. INTRODUCTION

We focus on a downlink problem where the transmitter
(called relay in Fig. 1) receives stochastic arrivals of pack-
ets intended for N receivers and uses an error-free broad-
cast channel to transmit packets. The packets originate at
source nodes whose transmissions are not studied here and are
considered uncoded. There exist additional side information
links, denoted with long dotted arrows in the Figure, that
connect some sources to some receivers. The wireless network
coding problem is to find a joint coding/scheduling policy
that stabilizes this system whenever possible (i.e. it achieves
maximum throughput). Note, that the maximum throughput for
this problem is unknown because of the inclusion of coding
policies in the admissible set. Our aim in this paper is to
show that simple heuristics outperform existing state-of-the-art
solutions.

The potential to increase throughput in a practical wireless
system using side information and XOR coding is first pro-
posed in [1], using overhearing. Prior work has shown that
intersession network coding must be combined with schedul-
ing in order to realize the throughput gain under fluctuating
conditions (i.e. interference, erasures, random arrivals, etc), see
for example [2]–[5]. In [6], the solution to the joint problem
of coding/scheduling is given for the case of 2 receivers and
it is shown that simple dynamic policies based on XORs
are sufficient for capacity achievability. However, the problem
becomes much more complicated when N > 2. In this paper,
we show that the general problem for N > 2 relates to another
interesting broadcast problem, called index coding.
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Fig. 1. An instance of the Wireless Network Coding problem for N = 3.
Arrows show wireless links. Solid arrows show the broadcast channel under
study; the relay/transmitter must choose a sequence of coded transmissions that
guarantees the decoding of all the requested packets. The receivers can use side
information obtained through overhearing (long dotted arrows).

A. Index Coding

The problem of finding the optimal index code was in-
troduced in [7], where a base station attempts to minimize
the number of transmissions such that all receivers have ob-
tained one required message (or bit). In the simplest form
of the problem, the base station is given a set of messages
W , {w1, w2, . . . , wN} and each receiver i requires a different
message wi. The problem becomes interesting and complicated
by the fact that each receiver has available side information
Hi ⊂ W , where it is assumed that wi /∈ Hi. This side
information can by harnessed by a coding policy to reduce
significantly the number of necessary transmissions in compar-
ison to forwarding without coding, or even practical intersession
network coding schemes proposed beforehand [1], [8].

The interest of the community in this problem has increased
recently, mainly due to a number of important discoveries; we
report some of them here. Every instance of the problem of
finding an optimal network code on a Direct Acyclic Graph
(DAG) and of the problem of finding a linear representation of
a matroid were shown to be reduced to an instance of index
coding in [9]. In [10], it was shown that the index coding
problem is essentially an interference alignment problem, i.e.
the coded transmissions must align with the side information
on each receiver so that the decoding of the particular packet is
guaranteed. Although there exist several results in the literature
dealing with special cases, the general solution of the problem
is not known and moreover it has been shown that linear coding
is not in general sufficient for achieving the capacity, [11].
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Recently it was shown that finding the optimal linear index
code is equivalent to minimum rank completion of a partially
sampled matrix, where the unsampled elements of the matrix
correspond to the side information, [12]. Also, the same work
shows that linear codes are sufficient for capacity in some
special cases, though these do not apply to our problem. Note,
that the low rank completion problem is known to be NP-hard.

B. Our Contribution

In this paper we focus on the problem of wireless network
coding with imperfect overhearing and show, that under the
assumption of symmetric (equal link capacities) error-free
broadcast channel, this problem can be mapped to specific
instances of the index coding problem. The optimal index
code is shown to be a path-wise optimal evacuation policy
for our system. Characterizing the throughput and providing
an optimal dynamic policy requires solving arbitrarily large
instances of the index coding problem, which is infeasible using
the available solution of [12]. This motivates a heuristic; we
decompose the problem into smaller problems which can be
solved offline and stored on a lookup table.

The case of dynamic wireless network coding without over-
hearing is tackled in [13]. The following contribution is made
in this paper towards this direction: we provide a tool for
characterization of throughput of the wireless network coding
problem with imperfect overhearing by using index coding-
inspired solutions. Although our approach is similar to [13] in
the sense that we analyze the dynamic properties of index cod-
ing, it provides an easy to use intermediate result and effectively
decouples the scheduling problem from the coding problem.
Given any index code with known code length performance,
the throughput performance in the problem with packet arrivals
can be determined as optimal or suboptimal by looking at
the performance for a large number of packets. Note that two
throughput optimal policies may have different evacuation time
performance (cf. the example of input-queued switches in [14]).

An important question to ask at this point is: how do the index
coding-based solutions compare to prior schemes like RLNC
and COPE-like greedy IDNC in the problem with arrivals?
For the case N = 2, RLNC and greedy IDNC are shown to be
throughput optimal, [6]. Also, in slightly different context, it is
known that a RLNC scheme achieves the maximum through-
put of the broadcast channel with erasures, [15], where the
difference is that initially there is no overhearing information
but the broadcast transmissions are partially erased at different
receivers. Consider the snapshot example of Figure 2; RLNC
and IDNC require 4 slots to empty this system, while the
optimal binary field index code is to transmit 1 + 3, 3 + 4 and
2+5, which empties the system in 3 slots. This shows that index
coding outperforms prior approaches in terms of evacuation
and motivates further the question whether it also increases the
throughput of this system. Our simulation results answer this
question by showing that the proposed index coding-inspired
heuristic strictly outperforms both RLNC and IDNC.
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Fig. 2. The system under consideration for the case of three receivers; packets
from three unicast flows arrive at the coding node R and are destined to three
different receivers. Due to side overhearing channels, a copy of the arriving
packet, destined to one receiver, may also arrive at another with a probability.
We illustrate this for an arrival destined to receiver 1 that is also overheard by
receiver 3.

II. SYSTEM MODEL

Consider a broadcast network with one transmitting node R
(the relay) and a set of receivers N , {1, . . . , N}. The time
is slotted, where slot t occupies the time interval [t, t + 1).
Each slot fits exactly the transmission of one packet of L bits,
either coded or native. This implies that the relay communicates
through the broadcast channel with all receivers at the same
unit rate. Incorporating integral rates is captured within this
framework, but the problem of handling different transmission
rates per receiver (as in [6]) is left for future work.

Erasures. We assume that the side information links, con-
necting the sources to the receivers, suffer from erasures. On
the contrary, the broadcast transmissions made by the relay can
be heard to all receivers erasure-free. Incorporating erasures in
these links complicates the problem significantly and is left out
of scope of this exposition. The links connecting the sources to
the relay are also assumed to be erasure-free but the erasures
on these links can be easily captured by adapting the values of
the erasure probabilities in the side information links.

Arrivals. At the beginning of each slot, packets destined to
receiver i arrive at R with the following property: the same
packet arrives at receiver j 6= i with a probability pij . This
probability corresponds to a random overhearing event, that
occurs whenever the side information link is not erased. We
assume that each overhearing event is independent from the
others and we are given the matrix of probabilities (pij), where
pii = 0, ∀i ∈ N . The packets arrive according to a stochastic
arrival process with rate λi, i ∈ N , see Fig. 2. We assume i.i.d.
packet arrivals within each slot. The arriving packets destined
to receiver i are stored in an infinite queue with a backlog
denoted by Qi(t).

Storage. The receivers store overheard packets useful for de-
coding in the decoding buffers. Also, any additionally received
packet (coded or native) from the transmissions of the relay is
also stored in the buffer.

Transmissions and coding. At each slot t, R transmits
exactly one packet. We assume that the packet is a linear
function of the available packets, where the coefficients are
drawn from a finite field Fq and they are applied bit-by-bit
on existing packets. This is restrictive; more general operations
such as allowing arbitrary linear operations on bits (e.g. shifting
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bits and then add them) which is known as vector linear coding
or even non-linear operations are not considered here.

Decoding and Departures. When a receiver has successfully
decoded an intended packet, then the corresponding packet
is considered departed from the input queue. When all input
queues are empty we also flush all buffers, thus, finite busy
periods guarantee buffer stability.

III. STABILITY CONSIDERATIONS

Denote the sum of input backlogs under coding/scheduling
policy σ at the end of time slot t as Xσ

i (t) ,
∑
iQi(t). As in

[14], we say that the system is stable if

lim
q→∞

lim sup
t→∞

Pr (Xσ
i (t) > q) = 0.

Consider the set of all arrival vectors λ ≡ (λi) for which
the system is stable under policy σ; the closure of this set
denoted by Λσ is called the stability region of the policy σ.
The region Λ , ∪σΛσ characterizes the system and is called
the throughput region. A policy that achieves the throughput
region of a system is called throughput optimal.

A. Evacuation Times and Stability

In order to study the throughput of the described system, we
consider a different operation, which is based on evacuating
system snapshots. Each snapshot is represented by a vector
w ≡ (Wi), where Wi denotes the number of packets destined to
receiver i. The packets arrive at the input queues following the
rules explained above regarding overhearing. Thus, every one of
the Wi packets may also reside at the buffer of receiver j with
probability pij . Then, the system operates as it would normally
do with the difference that no extra arrivals are introduced in
the system. An admissible evacuation policy π is a sequence of
(possibly coded) transmissions at the end of which all packets
have departed from the system.

Let Π be the set of all evacuation policies (this includes
policies that perform different types of codes). We denote with
Tπ(w) the evacuation time of policy π ∈ Π, which is the mini-
mum number of slots required to empty the system under policy
π when w packets reside in the input queues at time zero. We
denote with T

π
(w) , E[Tπ(w)] the average evacuation time

of this policy, where the expectation is taken over the random
overhearing events. We denote with T

?
(w) , infπ∈Π{T

π
(w)}

the infimum of the average evacuation time over all the policies
in the set. Let dtxe denote the vector (dtx1e , . . . , dtxNe),
where x is a real vector and

T̂ (x) , lim
t→∞

T
?
(dtxe)
t

.

Note, that each evacuation policy π can be mapped to an
epoch-based coding/scheduling policy σ(π), which is admis-
sible in the system with arrivals defined above. This σ(π)
evacuates all packets present in the system at the beginning
of each epoch using π and treats all new arrivals in the next
epoch, see [14]. Additionally, as shown in [14], for every policy
σ in the system with arrivals, we can construct a randomized
evacuation policy π(σ) that evacuates w as follows: Initially

all packets w are kept in memory and the input queues are
empty. Every time slot, random arrival RVs are generated that
transport some of these packets from the memory to the inputs
queues while at the same time, σ is used on the input queues.

THEOREM 1 [FROM [14]]: The following hold:
1) The throughput region of the system is the set of vectors

λ ≥ 0 satisfying
T̂ (λ) ≤ 1.

2) Suppose that for an evacuation policy π we have

lim sup
t→∞

T
π
(dtxe)
t

= T̂ (x),∀ x, (1)

then, the epoch-based policy σ(π) is throughput optimal.
3) Suppose that a policy σ is throughput optimal. Then

the randomized evacuation policy π(σ) is asymptotically
optimal in terms of evacuation in the sense that

lim sup
t→∞

T
π(σ)

(dtxe)
t

= T̂ (x),∀ x. (2)

Theorem 1-(i) states that given a direction λ, the maximal
point of the throughput region can be determined by the
asymptotic growth of the minimal evacuation function, or else,
by examining how fast can the system evacuate packets when
the packets grow to infinity at proportions dictated by λ. By
evaluating the above condition in all possible directions, the
throughput region is obtained. Theorem 1-(ii) states that if
an evacuation policy π is identified with optimal asymptotic
growth, then its epoch-based version σ(π) is a throughput
optimal policy. Also, Theorem 1-(iii) states that the randomized
evacuation version π(σ) of any throughput optimal policy σ
should have the same asymptotic growth with the optimal.
Thus, we have reduced the original problem of determining
the system stability region and proposing a throughput optimal
coding/scheduling policy to a different problem of finding an
evacuation policy that evacuates a large number of packets in
asymptotically optimal number of transmissions.

IV. THROUGHPUT REGION OF WNC AND INDEX CODING

In this section we study the problem of optimal evacuation
of the Wireless Network Coding system and we show that this
problem is an instance of index coding. Then we propose a
heuristic solution based on this formulation.

A. Mapping to an instance of index coding

First, observe that finding the minimum evacuation time of
the system is equivalent to minimizing the number of required
transmissions so that all receivers have obtained the requested
packets. Suppose we are interested to evaluate the quantity
T
?
(w) for some w and for some random realization of the

overhearing events ω. Let sp(ω) = (spi ) be a binary vector for
each packet p with spi = 1 if packet p is overheard at receiver
i and 0 otherwise. We collectively refer to a realization of all
overhearing events of packets w using s(ω). Below we describe
an instance of the index coding problem whose minimum code
length is equal to T ?(w, s(ω)).
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Fig. 3. An example with three receivers and six packets, where three packets
are overheard and they reside on the corresponding decoding buffers (left). The
corresponding overhearing SIG is shown (right).

Given w and s(ω), denote the set of all packets W , (i.e.
|W| =

∑
iWi), the “want” sets W1, . . . ,WN and the “has”

sets H1, . . . ,HN for the N receivers. We have |Wi| = Wi

and wj ∈ Hi if swj

i (ω) = 1. The sets satisfy these standard
conditions:

Wi ∩Wj = ∅, ∀i, j ∈ N and i 6= j

∪Ni=1Wi =W,

Hi ∩Wi = ∅, ∀i ∈ N .

There are different ways to define the Side Information Graph
(SIG), e.g. [16] connects users to packets in a bipartite graph.
We define the SIG to be a special case of [12] where vertices
are packets and edges indicate side information.

DEFINITION 1 [OVERHEARING SIG]: The Overhearing SIG
G ≡ (W, E) is a multipartite directed graph with vertices the
packets (elements of W) and edges constructed as follows:
If v ∈ Hi, we construct the set of directed edges Oiv ≡ {(w, v) :
w ∈ Wi}. We call this set an overhearing hyperedge, i.e the set
of edges that correspond to a single overhearing event. Then
E , ∪(v,i)O

i
v .

Note that for every packet v overheard by receiver i, we are
to draw Wi directed edges to node v from all nodes w ∈ Wi,
see the clarifying example in Figure 3. G is called multipartite
because there exist no edges connecting nodes belonging to the
same setWi. Next, we define the set of all binary matrices that
fit a SIG:

DEFINITION 2 [FITTING CONDITION]: Let G ≡ (W, E) be
any SIG. We say that the matrix A ∈ F|W|×|W|2 fits G if for
all i, j = 1, . . . , |W|:

aij =

{
1 i = j,

0 (i, j) /∈ E.

Let A(G) be the set of all matrices that fit G.

Consider now the case that packet v is overheard by receiver
i. Then the elements (ajv), j ∈ Wi correspond to the
hyperedge of this overhearing. Note, that the elements that
correspond to all overhearings are undefined in the above fitting
condition. See Figure 4 for an example.

rec. 1 rec. 2 rec. 3

A(G) =


1 0 0 0 ∗ 0
0 1 0 0 ∗ 0
0 0 1 0 ∗ 0
0 0 0 1 0 ∗
0 0 0 0 1 ∗
∗ 0 0 0 0 1


Fig. 4. Set of matrices that fit the SIG of Figure 3 (right). ‘∗’ indicate entries
to be completed with “0” and “1”.

Let IG be the set of all index codes for SIG G. We denote
with len(C), C ∈ IG the length of code C. We conclude
from the above that the minimum evacuation time for the
studied realization is equal to the minimum index code length
of the corresponding overhearing SIG G, or in other words,
the minimum length index code of the overhearing SIG is a
path-wise optimal policy in terms of evacuation,

T ?(w, s(ω)) = min
C∈IG

len(C). (3)

B. Optimal Index Code
Let G be a SIG and I`G the set of all linear index codes for

this SIG. Define:

minrk2(G) , min
A∈A(G)

{rank2(A)}.

THEOREM 2 [LINEAR INDEX CODING FROM [12]]: If the
encoding and decoding functions are constrained to be linear,
the minimum index code length of a SIG G is

min
C∈I`G

len(C) = minrk2(G). (4)

The rank of the matrix A is calculated using field F2 opera-
tions. The optimal code is the following: Pick a rank-minimizer
matrix A∗, choose any minrk2(G) linearly independent rows
of A∗ and transmit the corresponding linear equations of
packets using the elements of these rows as coefficients.

From (2), (3) and (4), we conclude that the throughput region
can be determined by minrk2(G) as W scales to infinity.
Unfortunately, low rank matrix completion is known to be
a hard problem. Thus, we proceed by proposing a heuristic
evacuation policy which is based on the above result.

C. A Proposed Heuristic
We construct a lookup table containing all instances of the

problem such that each receiver requests at most one packet.
Due to different possible overhearing event combinations, there
exist

∑N
i=1 2i(i−1)

(
N
i

)
such instances, many of which are,

however, homomorphic. Also, note that this is exponential to
the number of receivers but not the number of packets (as
before). We compute the minrnk2 for each of these. Then
we order the elements in this table according to the efficiency
metric #decoded packets

minrnk2
. In case of tied metric, priority is given

to the packets with the smaller out degree in the overhearing
SIG. Yet another tie is solved arbitrarily. The proposed policy
simply chooses the top element of the lookup table for which
all involved packets appear in the input queues.
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Fig. 5. Average aggregate backlog performance for a system with three
receivers, in two chosen directions λ = (λ, λ, λ)(left) and λ = (λ, .8λ, .6λ)
(right). The overhearing probabilities are: p12 = p23 = p31 = .8,
p13 = p21 = p32 = .5.

V. COMPARISON WITH STATE-OF-THE-ART POLICIES

In this section we consider two important state-of-the-art
schemes that are used as solutions to the WNC problem and
compare their performance to our Heuristic policy by use of
simulation.

IDNC: we have in mind greedy immediately decodable
policies like the one proposed in [1]; form the XOR sum of
packets such that each packet can be immediately decoded
at the corresponding intended receiver and choose the largest
such sum (ties solved randomly). We expect this policy to be
inefficient compared to the optimal because it fails to solve
cycles in G, for example consider the example given in the
introduction.

RLNC − g: this policy considers the packets at the input
in different generations of size g. In the each generation, g
packets from each receiver are coded together forming Ng
equations with randomly drawn coefficients. In some cases,
some receivers do not participate if they do not have any
packets. We assume an idealized version of the policy where
the coefficients are pseudo-random and they result in linearly
independent coded packets. These equations are transmitted un-
til all receivers have decoded all Ng packets. Side information
packets are also linearly independent equations that can be used
to accelerate the decoding. However, the required transmissions
are calculated based on the receiver with the smallest number of
side information packets. When the first generation is decoded,
the transmissions stop and we proceed to the second generation.
When all the packets of the generation are decoded we move
to the next generation. We expect this policy to be inefficient
compared to the optimal because it requires all the receivers
to decode all packets. On the contrary, optimal index codes
transmit only the amount of information that is required so
that each receiver obtains the packets it is interested in.

We compare the dynamic policies IDNC,RLNC − 8 to our

proposed Heuristic in Figure 5. The Figure shows the average
backlogs of the compared policies. In two chosen directions
λ = (λ, λ, λ), λ = (λ, .8λ, .6λ) and for a specific overhearing
probability matrix given in the caption, Heuristic outperforms
prior approaches, showing a throughput increase.

VI. CONCLUSION

We proposed a methodology for solving a joint cod-
ing/scheduling problem using insights from the index coding
problem. We also proposed policy Heuristic which outperforms
prior approaches. This is evidence that index coding increases
the throughput of this system and that IDNC,RLNC are not
throughput optimal.
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