Routing with Blinkers: Online Throughput
Maximization without Queue Length Information

Georgios S. Paschos, Mathieu Leconte, and Apostolos Destounis
Mathematical and Algorithmic Sciences Lab, Huawei Technologies Ltd, Paris, France

Abstract—We study a service provisioning system where ar-
riving jobs are routed in an online fashion to any of the avail-
able servers; typical applications include datacenters, Internet
switches, and cloud computing infrastructures. A common goal
in these scenarios is to balance the load across the servers and
achieve maximum throughput. For example, the classical online
policy Join-the-Shortest-Queue (JSQ) routes an arriving job to
the server with the shortest instantaneous queue length. Although
JSQ has desirable properties, it requires coordination between
the routers and the servers in the form of queue length reports,
which prohibits its practical usability in many scenarios.

In this paper we study the practical case of “routing with
blinkers”, where no coordination is allowed between the routers
and the service provisioning system, and the routers act in an
individual manner with limited view of the system state. Every
router keeps a log of delays of all jobs it has routed in the past;
these are delayed estimates of the actual server queue length.
Although easy to acquire, such information is a highly inaccurate
depiction of the system state and hence it is unclear whether it is
enough to achieve maximum performance. Motivated by the fact
that a reasonable policy such as Join-the-Shortest-Delay fails to
achieve maximum throughput, we propose a novel routing policy
that “samples” the servers periodically and achieves maximum
throughput, subject to a condition for the service discipline of
the server.

I. INTRODUCTION

We focus on a service provisioning system that can be
abstracted as a bipartite network graph, see figure [I] Each
router is connected to a subset of servers and should choose
among them where to route the arriving jobs. Such a model
covers a variety of interesting applications like data centers [/1]],
input-queued switches [2], and cloud computing installations
[3[], where the router may play the role of the load balancer.

In this setup, we assume that the future job arrivals are
unknown and our goal is to achieve maximum throughput.
Clearly, static allocation policies like Round-Robin or Ran-
domized Routing with fixed probabilities fail to achieve this
goal [4] since by design they only work for specific arrival
rate vectors. A well known policy that solves this problem
is the Join-the-Shortest-Queue policy (JSQ). Upon arrival of
a job request, JSQ examines the backlogs of the reachable
servers and routes the job to the one with the shortest queue.
This policy is shown to achieve maximum throughput in the
underload [5], and the best load balancing in overload [6],
hence JSQ has become the reference policy in this setup.
When the set of servers is very large, prior work shows that
consulting only two [7], or even less [8], provides most of
the system performance. Moreover, queue length reports need
not be instantaneous, since delayed queue length estimates are
also enough to guarantee maximum throughput [9].

However, JSQ approaches are rarely adopted in the practical
systems, mainly because they require the servers to frequently

arriving jobs
delay report

server queues

11311

routers

Fig. 1. When a job completes service, it reports to its corresponding router
the delay. Arriving jobs are then routed to reachable servers using a routing
policy that bases the decisions on reported delays.

report their backlogs to the routers. This might be difficult for
many reasons, (i) the routers may be geographically located
in remote areas, (ii) the devices involved may not cooperate,
(iii) frequent messaging is not desirable in high-speed systems,
(iv) security reasons may prohibit this reporting, etc. We are
motivated to study the throughput performance of an online
scheduler with no queue length reports.

In this paper, we assume that the service provisioning
system is not willing to provide any information to the routers,
except for acknowledging the completion of service for the
routed jobs. Hence, the server queue lengths are not available
to the routers. Instead, the routers receive acknowledgments
for past routed jobs with job delay information, i.e., the time
that the past routed job spent in the server queue, see Figure|[T}
Since the router action is decided based on partial information
about the server congestion, with only implied knowledge
of what other routers are deciding, we parallel the way this
routing works to the use of blinkers.

The setup of routing with blinkers is very realistic; for
example assuming the servers respond to TCP, it is possible
to combine TCP acknowledgments with a time stamping
mechanism and obtain the required information without any
modifications of the service provisioning system. Hence, as
opposed to the server queue length, the job delay information
can be assumed readily available at the sender of the job.
Note that this is different from knowing the queue lengths,
since the queue length depends on jobs that have arrived from
all routers. In this paper we study the question whether this
job delay information is also enough to achieve maximum
throughput, and we find that the answer is positive.

A. Join the Shortest Delay Policy

Consider the example of two servers with unit capacity in
Figure 2}Heft. Jobs arrive at routers 1 and 3 with rate 0.8 and
can only be routed to a single server as indicated by the links.
Hence only router 2 with rate 0.3 needs to decide where to
route the arriving jobs. If JSQ is used, the arrivals of router
2 will be equally split to the two servers, and each server

ility under Join-the-Sh Delay policy

10000

08 = 2
III :; 8000
03 ?;: 4000
I é 000
08 =y Server queues - o
routers . time ' x10*
Fig. 2. (left) An example with three routers and two servers. (right)

Oscillations of queue lengths under the Join-the-Shortest-Delay policy for
the example on the left.

will end up having total job load 0.95, which is less than the
server capacity and hence we say that the throughput vector
(0.8,0.3,0.8) is achievable.

We now define the Join-the-Shortest-Delay (JSD) policy
which falls into the framework of routing with blinkers.
Whenever a new job arrives at stream 2, the most recent delay
reports from server 1 and 2 are compared, and the new job is
routed to the server with the smallest delay. In other words,
router 2 remembers the quality of service received from the
last completed job at each server and chooses the server with
the best quality (smallest delay). Interestingly, such a simple
policy fails to balance the server load properly. In Figure
right we observe that the server backlogs perpetually increase
in an oscillating fashion. This implies that the throughput
vector (0.8,0.3,0.8) is not achievable by the JSD policy. Since
the point is achievable by JSQ, we conclude that JSD does not
achieve maximum throughput.

The unwanted oscillations can be justified by the fact that
the delay measurements can be an arbitrarily bad estimate
of current server queue lengths. In fact, when a server is
measured to have large delay, it is never again used unless
another server reaches a point of having even larger delay; by
that time the former server may be empty. This observation
motivates frequent “sampling” (by routing jobs) of the servers
that appear to be congested in order to better track the server
congestion status.

B. Strict Priority

The discipline used by server determines the order in which
the jobs are served (examples include First-Come First-Serve
(FCFES), or priority disciplines). In past JSQ-related work, the
order in which the jobs are served does not affect the stability
of the server. This is different in our case. Since the service
discipline relates the available information (e.g. the job delay
measurements) to the actual queue length, it becomes crucial
to the system performance. In this example we stress the
importance of the service discipline.

In Figure 2}left, assume that stream 2 jobs are prioritized at
both servers. From classical queueing theory, we know that the
delays of stream 2 jobs do not “see” the low priority traffic
[10]. Hence the information available at stream 2 router is
not related to the congestion of each server. Thus, the routing
decisions become entirely blind to the server queue lengths.

To verify the problem with a numerical example, consider
two different arrival vectors (1,0.3,0.5) and (0.5,0.3,1).
They are both stabilizable under JSQ. However, any routing
policy that bases the decisions only on atomic past delay

measurements, due to job prioritization cannot distinguish the
two cases, and will not be able to avoid overloading one of the
two servers. Hence under strict priority, the throughput region
of routing with blinkers is reduced.

In conclusion, for optimal routing with blinkers, it is re-
quired for the servers to satisfy certain conditions regarding
the service discipline used. In this paper we analyze such
conditions.

II. SYSTEM MODEL

A set of routers U is connected to a set of servers S using
a bipartite graph. A link (u,s), u € U,s € S in this graph
indicates that router u is connected to server s. Let £ be the
set of such available connections.

The time is slotted, and A, (t) jobs arrive to router u € U to
be routed to one of the servers. The mean arrivals are denoted
with a,, = E[A,(t)]. We also assume that the arrivals in every
slot are bounded above by some constant, A, (t) < Apax <
oo. The routing decision must be taken instantaneously. We
denote with AT_(t) the routing variables decided by the router
under policy 7. Evidently we must have at each slot

> OAT () = Au(t), Vuel,Vt.
seS(u)

where S(u) = {s : (u,s) € £} C S is the set of servers
reachable by router w.

Server s maintains a queue with backlog denoted by Qs(¢),
which evolves over time as

Qs(t+1) = (Qs(t) — ps) ™+ AL (D), ()

where 5 is the service rate of the server s and) A7 (1)
is the total number of routed jobs to s.

We define the process Q(t) = [Qi1(t), ..., Qs|(t)], where
Q. (t) is a list of the packets at server s, tagged by the ID of
the router that sent them. The order of the list represents the
order by which these packets would be served In addition,
denote by Wp,(t) the time that the m — th packet on the
list has already spent at the queue by time ¢. The process
X(t) = (Q(t), W(t)) is a Markov chain on a countable state
space and describes the state of the system. Notice that the
queue lengths Q(¢) can be retrieved from X(t).

In this paper we assume that the processes X'(t) and Q(t)
are not observable by the routers. What can be observed by
the routers are the delay measurements of their finished jobs.
Consider the matrix D(t) = (Dys(t))y,s Where the element
D,s(t) is the delay experienced by the last job of class u
served by server s. By convention, D,(t) = oo if u is not
connected to s, and D,s(¢) = 0 if s has not yet served any
job of class u. In addition, consider the matrix F(¢) containing
how many jobs of router u are in the queue of each server s.

!For simplicity we assume here that the service rate is fixed and integral,
but the model can be easily extended to include random service with any
positive mean.

For example, under FCFS discipline the packets that arrived earlier are
first, under Last-Come First-Serve the packets that arrived later go first, under
strict priority the packets of the router with highest priority go first, under
round robin the order is randomly changed each time slot, etc.

Note that each router can readily have this information about
its own jobs.
Definition 1 (Routing with Blinkers (RwB) Class). A policy
is admissible in the class RwB if the observations available to
router u at time t is restricted to ((Dys(t))s, (Fus(t))s)-

We define stability of the system as rate stability for the
queue length process Q(¢) [11].
Definition 2 (Stability). The system is (rate) stable if

lim @s(t)
t

t—o00

=0,Vs€S.

We are interested in determining the stability region of the
RwB class, and finding a single RwB policy that achieves the
stability region.

III. OUTER BOUND OF UNRESTRICTED ROUTING

Since the RwB class is a subset of routing policies, it follows
that their performance is dominated by unrestricted routing,
hence the unrestricted routing feasibility region is an outer
bound for RwB. In this section we present this bound, and we
also give a useful offline randomized policy.

Consider the following offline bipartite routing problem. Let
a,, denote the amount flow arriving at u, and a = (a,) the
arrival vector. We decompose the arrivals to a flow matrix
f = (fus), where the element f,s corresponds to the portion
of a,, that is routed to server s. Hence, it must be

ay = Z fus, VYu €U. (routing conservation) (2)
seS(u)

Additionally, we would like the total flow reaching a server
to be smaller than the capacity of the server us, i.e.,

Z fus < s, Vs €S. (server capacity) (3)
u:s€S(u)

Then we consider the following set (also termed region) of

arrivals:
A={a>0:3f >0,02) — (@) are satisfied}. 4)

The region A is also known as the feasibility region of the
offline bipartite routing. The next lemma makes a (standard)
connection between the offline flow problem and the online
problem with random job arrivals.

Lemma 1 (A is a superset of the RwB region). Let a, =
E[A,(t)] be the mean number of jobs arriving at router wu,
and a = (a,,). Suppose that a ¢ A, then any RwB policy is
unstable.

By a trivial adoption of [11] we may prove the lemma
for the class of unrestricted routing, hence this completes the
proof also for the RwB subclass. Furthermore, consider the
following offline randomized policy.

Stationary Randomized Routing (STAT(a)).

o Fix a in the interior of A, and find a flow matrix £* that
satisfies (2), and (3 less an extra e positive term:

Z fo,<ps—e VseS.)
S(u)>s

Since a is in the interior of A, this is possible for some
small ¢ > 0.

o At each slot, and each arrived job j € {1,...,A,(¢)},
select a server with probability ﬁ and route j
to the selected server, so that we finally have

E[AT ()| X(1)] =E[AZN ()] = fis: (6

us

Corollary 2 (STAT(a) optimality). Suppose a is in the interior
of A, then STAT(a) stabilizes the system.

Thus, given a, STAT(a) suffices for optimal routing. Next,
we consider the case where a is unknown.

IV. A MAXIMUM THROUGHPUT RwB PoLICY

In this section we propose an online RwB policy (deprived
of server queue length information) that achieves maximum
throughput agnostically to arrivals. The result is obtained
under a condition for the service discipline.

A. Periodic Probing

Let us assume that each router u periodically sends a
probing job to each of its reachable servers. If no real job
is available to be used as probe, then the probing job is a fake
job; it only serves as a way of collecting delay information
from the serversE] Note, however, that the probing job has to
wait in the server queue as the normal jobs, and hence the
information obtained in this way is not immediate.

The fake job adds extra load on the servers. In particular
the total arrivals to a server at time ¢ become

Aus(t) = AL (8) + 1[¢|T7], (7

where AT (t) are the routed real jobs under policy m, and
1[¢|T] is a periodic indicator function equal to 1 once every
T slots, and zero otherwise. Note, that the number of probing
jobs over a probing period T is less than the maximum in-
degree of the server. Hence, (i) A,;(t) is also upper bounded
by a constant, and (ii) we can keep the incurred overhead small
by choosing 7' large enough.

Let F,5(t) be the number of probe packets of router w that
have not yet been served by server s. Inspired by prior work
on dynamic overlay routing [[12f], we call these the probes
in flight. Keeping the number of probes in flight stable would
also keep the queue sizes stable, as the total number of packets
including probes that may arrive during a period 7" is bounded.
In what follows we will develop a routing scheme based on
probes in flight.

B. Server Discipline

Motivated by the example of strict priority in the intro-
duction, we proceed to define a condition for the employed
discipline by the server, which guarantees optimality of the
RwB class. The development below will prove that this con-
dition is a sufficient condition for RwB optimality. A necessary
condition is left as future work.

3In a real implementation of the probing system, it is possible to adapt
the probing scheme to remove entirely the fake jobs. However, we omit this
consideration in this paper to simplify exposition.

Condition 1 (Service discipline). Suppose that the service
discipline is such, that we have

Qs (t) <c {nlr; Fus (t) + c2, 3

)

where c1,co are positive constants.

In words, we require that the probes in flight at server s sent
by any router are not arbitrarily far from the server backlog. An
example of service discipline that satisfies the above condition
is the FCFS where for any two users v # v we have

|Fus(t) — Fus(t)| < 1, Yu,v €U, (u,s),(v,s) € E,

from which it follows
Qs(t) < (1 + {IllI; Fus(t)> T Amax|U(s)],
u,s

where U(s) is the set of routers that can reach s. Hence (§) is
satisfied. On the contrary, strict priority does not satisfy (8).

C. Proposed Policy & Analysis

We propose a dynamic routing policy in the class RwB.

T-probing RwB Policy (7-RwB) of router w.

T-probing. Every T slots, send a fake job at each reachable
server in the set S(u).
Server selection. At each slot, observe F,;(t) for all reachable
servers and Route the jobs to the server with the minimum
Fus(t), ie., choose s7(t) € argminges(y) Fus(t), where the
ties are broken arbitrarily, and then select

x| Au(t) if s=57(t)
Aus(t) = { 0 otherwise

In order to reflect the added workload due to periodic probing,
we need the following notion:
Definition 3 (1/T—interior of the feasibility region).

A = {az 0 : 3f s.t. for some € >0

M‘i‘z.fus Sus_gl,VSGSClnd }

Terms @ reflect that the probing packets are injected at
a rate of 1/7T per connected user at every queue. Note that
A is achievable by a random stationary policy. We have the
following main result of the paper:

Theorem 3 (Optimality of T-RwB). Suppose a € Ar.
Further, suppose that all routers operate individually with T-
RwB, and the servers use a discipline that satisfies C[I| Then
the system is rate stable.

Note that for large 7', A7 approaches the feasibility region,
therefore policy 7T'—RwB is close to optimal.

Proof of Theorem [3}

We use the candidate Lyapunov function L(t) =
> s Qs(t)1log(l + Q,(t)). The rational for using this non-
standard Lyapunov function instead of the classical quadratic
one is that we cannot have an accurate enough estimation of
the queue lengths at each time instant. In fact, our estimation

may be off by a multiplicative factor. This implies that we
need to use a Lyapunov function which does not grow too
fast to infinity. First, we prove a technical lemma that relates
to this function.

To simplify notations, write A X = X(t + 1) — X((¢),
for any quantity X. Let B > max, max{|U(s)|Amax, tis} be
a constant that bounds the queue arrivals and departures in a
queue in a time slot.

Lemma 4. AL <) log (14 Qs(t)) >, AL (t) —
C, where C = |S|B*+ B log(1 + ps).

NS) +

Proof. For each server s, we have

A (Qslog(1+ Qs))
= Qs(t +1)A (log(1 + Qs)) +
Qs(t+1)
< TQS(”AtQS

where we used logz < x — 1 for z =

(A:Qs) log(1 + Qs (1))
+ (A:Qs) log(1 + Qs (1)),

Q. (ttl) T—?Q(t(t)1) . As arrivals

and departures are bounded by B, the term IQJFSI; is also

bounded by B. Also, adding a bounded constant B log(1+)

to the overall value, we can replace A;Q by > A7 (1) — s,
as the two terms are equal for QQ5(¢) > B. Then,
A (Qslog(1+ Q) < B® + Blog(1 + pus)
(Z AnL (1) us> log(1 + Qs(1)).
The lemma follows by summing over all servers. O

Next, for policy m=T-RwB we consider the one-slot Lya-
punov drift E[A,L|Q(t)] = E[L(t + 1) — L(¢)|Q(t)], where
the expectation is taken over random realizations of the
arrivals, services, and possibly routing decisions. Applying
lemma [4] and using

E[AL|Q(t)] < O+Zlog (14 Qs(t))

Z AT RWB

Applying to the pair (u,s), and using convexity of the
logarithm we get

)+ 1[¢|T] —

wfa]

log(1 + Qs(t)) < log(1 + c1Fys(t) + c2)
<log(l+ Fus(t)) +loger + (14+c2 —cp)t

Plugging this into the drift, we get

E[A:LIQ(t)] < C’+Zlog + Qs (1) (LT = ps)

+ZZE ATRWB

and C” is an appropriate constant. Note that our policy 7-RwB
routes the jobs to minimize at each slot the term

22 A

()} log (1 + FuS(t»

t)log(1 4+ Fyus(t)),

hence we may replace the decisions AT:R¥B(¢) of our policy
with those of STAT(a), in which way we get

E[AL|Q(t)] < C' + Zlog (1+Qs(t)) (L[HT] — ps)

+ZZE [ASTAT(4)| Q(t)] log (1 + Fus(t))

In addition, note that the fake jobs in flight are also
part of the queue length, thus we always have F,(t) <
max(y, s) Fus(t) < Qs(t). By plugging this into the drift and

using (3)-(6) we get

E[ALIQ()] < O+ Y (U(s)|L[HT] — €5) log (1 + Qs(1)) ,

sES
)

where we have defined e, = ps — >, fos.
Now we are going to examine
Q(kT). We take its T-slot drift E[AL,|Q(kT)] =
E[L((k+ 1)T) — L(kT)|Q(kT)] by using telescoping
sums for (9). The idea is to split the queues into two sets:
set S; containing those that cannot get empty in slots
{kT' +1,...,kT + T} and another set containing the rest. For
all queues in the latter it holds Q4 (kT) < uT, therefore
since 7" and the maximum change to a queue in a slot are
finite, the contribution of all queues in S\ Sy in the T'—slot
drift can be bounded above by a constant 7'B. Assuming that
max Qs(kT) > Tmax s, 1.e. that set S; is nonempty (note

the process

that the opposite case corresponds to a finite set), then

kT+T-1
E[ALRIQRT)] < C"+ > > (Ul(s)LIHT] + €s)
S€S+ t=kT

x Eflog (1+ Qs(1)) |Q(KT)]
However, for every t € {kT),... kT +T —1} we have Q(t) <
Qs (kT) + T'B, therefore (C' is a finite constant)

E[AL|QGT)] < C+ Y (U(s)] - Tes) log (1 + Qs(kT))

seSL

O =T Y log (1+ Qs(kT))

seS,
< C —T¢ log (1 + max QS(kT)) ,
for some ¢ > 0 since a € Ap. The above implies that the

process Q(kT') is positive recurrent (since it is aperiodic,
irreducible and the drift of a Lyapunov function is negative

outside a finite set), therefore limy_, oo M =0,Vs € S
and we have
s(t . s(kT)+ BT
lim LU < lim w =0,Vs €S,
t—o0 k— o0 kT
finishing the proof.]

D. Numerical Examples

We study the example of Figure[THeft, when a; = a3 = 0.8,
and we vary ap. From Figure [3] we conclude that 7' can be
appropriately chosen to yield high throughput (the maximum
in this case is 0.4) and low delay (small backlogs).

%01000 :
= —e—]JSD !
2 800[|——T=10 1
& e T = 50 '
Q600 == =T=250 :
1 I
S 400 1
5] 1
n 1
s 200 i
154
=
z o6 o ")
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

arrival rate of middle flow

Fig. 3. Average server backlog in simulation runs of one million slots, under
JSD, and T-RwB for T' = 10, 50, 250.

V. CONCLUSIONS

We propose Routing with Blinkers, a new dynamic routing
paradigm, where the routing decisions are based on individual
job delay information. Although these reports are easy to
obtain with no cooperation effort from the service provisioning
system, they represent an inaccurate depiction of the system
state. Reasonable policies like join the server with the shortest
delay are shown to be suboptimal. Also, strict priority rules
may hinder the dynamic routing operation. Thus, we propose
a probing framework and a condition for the service discipline
which guarantees that the congestion of competing users can
be detected. In this context, we show that a simple dynamic
policy that balances the probes in-flight is throughput optimal.
As future work, it is interesting to establish the necessary
condition that a service discipline needs to satisfy in order to
allow the RwB class to be optimal. The proposed framework
can find numerous practical applications in systems where
cooperation between router (or load balancer) and server is
not feasible.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” SIGCOMM Comput. Commun. Rev., 2008.

[2] N. McKeown, V. Anantharam, and J. Walrand, “Achieving 100input-
queued switch,” in INFOCOM, 1996.

[3] S. T. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing,” in [EEE INFOCOM,
2012.

[4] K. Katsalis, G. Paschos, Y. Viniotis, and L. Tassiulas, “CPU provisioning
algorithms for service differentiation in cloud-based environments,”
Network and Service Management, IEEE Transactions on, vol. 12, no. 1,
pp. 61-74, March 2015.

[5] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. on Automatic Control, vol. 37,
no. 12, pp. 1936-1948, Dec. 1992.

[6] C.-P. Li, G. S. Paschos, E. Modiano, and L. Tassiulas, “Dynamic
overload balancing in multi-server systems,” IFIP Networking, 2014.

[71 M. Mitzenmacher, “The power of two choices in randomized load
balancing,” Ph.D. dissertation, University of California, Berkeley, 1995.

[8] L. Ying, R. Srikant, and X. Kang, “The power of slightly more than one
sample in randomized load balancing,” in INFOCOM, 2015.

[9] L. Tassiulas, “Linear complexity algorithms for maximum throughput

in radio networks and input queued switches,” in INFOCOM, 1998.

D. Bertsekas and R. Gallagher, Data Networks. Prentice-Hall, Inc.,

1987.

L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Foundations and Trends in

Networking, vol. 1, no. 1, pp. 1-147, 2006.

N. M. Jones, G. S. Paschos, B. Shrader, and E. Modiano, “An overlay

architecture for throughput optimal multipath routing,” in Proc. of ACM

Mobihoc, 2014.

(10]

[11]

[12]

