
Alpha Fair Coded Caching
Apostolos Destounis1, Mari Kobayashi2, Georgios Paschos 1, Asma Ghorbel2

1 France Research Center, Huawei Technologies Co. Ltd., email: firstname.lastname@huawei.com
2Centrale-Supélec, France, email: firstname.lastname@centralesupelec.fr

Abstract—The performance of existing coded caching schemes
is sensitive to the worst channel quality, when applied to wireless
channels. In this paper, we address this limitation in the following
manner: in short-term, we allow transmissions to subsets of users
with good channel quality, avoiding users with fades, while in
long-term we ensure fairness across the different users. Our online
delivery scheme combines (i) joint scheduling and power control
for the fading broadcast channel, and (ii) congestion control
for ensuring the optimal long-term average performance. By
restricting the caching operations to decentralized coded caching
proposed in the literature, we prove that our proposed scheme
has near-optimal overall performance with respect to the long-
term alpha fairness performance. By tuning the coefficient alpha,
the operator can differentiate the user performance in terms of
video delivery rates achievable by coded caching. We demonstrate
via simulations that our scheme outperforms standard coded
caching and unicast opportunistic scheduling, which are identified
as special cases of our general framework.

Index Terms—Broadcast channel, coded caching, fairness, Lya-
punov optimization.

I. INTRODUCTION

A key challenge for the future wireless networks is the
increasing video traffic demand, which reached 70% of total
mobile IP traffic in 2015 [1]. Classical downlink systems cannot
meet this demand since they have limited resource blocks, and
therefore as the number of simultaneous video transfers K
increases, the per-video throughput vanishes as 1/K. Recently
it was shown that scalable per-video throughput can be achieved
if the communications are synergistically designed with caching
at the receivers. Indeed, the recent breakthrough of coded
caching [2] has inspired a rethinking of wireless downlink.
Different video sub-files are cached at the receivers, and video
requests are served by coded multicasts. By careful selection
of sub-file caching and exploitation of the broadcast wireless
channel, the transmitted signal is simultaneously useful for
decoding at users with different video requests. Although this
scheme–theoretically proved to scale well–can potentially re-
solve the future downlink bottleneck, several limitations hinder
its applicability in practical systems [3]. In this work, we take
a closer look to the limitations that arise from the fact that
coded caching was originally designed for a symmetric error-
free shared link.

If instead we consider a realistic model for the wireless
channel, we observe that a naive application of coded caching
faces a short-term limitation: since the channel qualities of the
users fluctuate over time and our transmissions need to reach
all users, the transmissions need to be designed for the worst
channel quality. This is in stark contrast with standard downlink
techniques, like opportunistic scheduling [17], [24], [18], which
serve the user with the best instantaneous channel quality. Thus,

a first challenge is to discover a way to allow coded caching
technique to opportunistically exploit the fading of the wireless
channel.

Apart from the fast fading consideration, there is also a long-
term limitation due to the network topology. The user locations
might vary, which leads to consistently poor channel quality for
the ill-positioned users. The classical coded caching scheme is
designed to deliver equal video shares to all users, which leads
to ill-positioned users consuming most of the air time and hence
driving the overall system performance to low efficiency. In the
literature, this problem has been resolved by the use of fairness
among user throughputs [24]. By allowing poorly located users
to receive less throughput than others, precious airtime is saved
and the overall system performance is greatly increased. Since
the sum throughput rate and equalitarian fairness are typically
the two extreme cases, past works have proposed the use of
alpha-fairness [15] which allows to select the coefficient α and
drive the system to any desirable tradeoff point in between
of the two extremes. Previously, the alpha-fair objectives have
been studied in the context of (i) multiple user activations
[17], (ii) multiple antennas [19] and (iii) broadcast channels
[20]. However, here the fairness problem is further complicated
by the interplay between scheduling and the coded caching
operation. In particular, we wish to shed light into the following
questions: what is the right user grouping and how we should
design the codewords to achieve our fairness objective while
adapting to changing channel quality?

To address these questions, we study the content delivery
over a realistic block-fading broadcast channel, where the
channel quality varies across users and time. In this setting,
we design a scheme that decouples transmissions from coding.
In the transmission side, we select the multicast user set
dynamically depending on the instantaneous channel quality
and user urgency captured by queue lengths. In the coding
side, we adapt the codeword construction of [6] depending on
how fast the transmission side serves each user set. Combining
with an appropriate congestion controller, we show that this
approach yields our alpha-fair objective. More specifically, our
approaches and contributions are summarized below:

1) We impose a novel queueing structure which decomposes
the channel scheduling from the codeword construction.
Although it is clear that the codeword construction needs
to be adaptive to channel variation, our scheme ensures this
through our backpressure that connects the user queues
and the codeword queues. Hence, we are able to show
that this decomposition is without loss of optimality.

2) We then provide an online policy consisting of (i) admis-

sion control of new files into the system; (ii) combination
of files to perform coded caching; (iii) scheduling and
power control of codeword transmissions to subset of users
on the wireless channel. We prove that the long-term video
delivery rate vector achieved by our scheme is a near
optimal solution to the alpha-fair optimization problem
under the specific coded caching scheme [6].

3) Through numerical examples, we demonstrate the superi-
ority of our approach versus (a) opportunistic scheduling
with unicast transmissions and classical network caching
(storing a fraction of each video), (b) standard coded
caching based on transmitting-to-all.

A. Related work

Since coded caching was first proposed [2] and its potential
was recognized by the community, substantial efforts have been
devoted to quantify the gain in realistic scenarios, including
decentralized placement [6], non-uniform popularities [5], [7],
and device-to-device (D2D) networks [4]. A number of recent
works replace the original perfect shared link with wireless
channels [10], [9], [11]. Commonly in the works with wireless
channels, the performance of coded caching is limited by the
user in the worst channel condition because the wireless multi-
cast capacity is determined by the worst user [13, Chapter 7.2].
This limitation of coded caching has been recently highlighted
in [11], while similar conclusions and some directions are given
in [9], [10]. Our work is the first to addresses this aspect by
jointly designing the transmissions over the broadcast channel
and scheduling appropriate subsets of users.

Most past works deal with offline caching in the sense that
both cache placement and delivery phases are performed once
and do not capture the random and asynchronous nature of
video traffic. The papers [8], [12] addressed partly the online
nature by studying cache eviction strategies, and delay aspects.
In this paper, we explore a different online aspect. Requests
for video files arrive in an online fashion, and transmissions
are scheduled over time-varying wireless channels.

Online transmission scheduling over wireless channels has
been extensively studied in the context of opportunistic schedul-
ing [17] and network utility maximization [14]. Prior works em-
phasize two fundamental aspects: (a) the balancing of user rates
according to fairness and efficiency considerations, and (b) the
opportunistic exploitation of the time-varying fading channels.
Related to our work are the studies of wireless downlink with
broadcast degraded channels; [21] gives a maxweight-type of
policy and [22] provides a throughput optimal policy based on
a fluid limit analysis. Our work is the first to our knowledge
that studies coded caching in this setting. The new element
in our study is the joint consideration of user scheduling with
codeword construction for the coded caching delivery phase.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We study a wireless downlink consisting of a base station and
K users. The users are interested in downloading files over the
wireless channel.

Fig. 1. Illustration of the feasibility region and different performance operating
points for K = 2 users. Point A corresponds to a naive adaptation of [2] on
our channel model, while the rest points are solutions to our fair file delivery
problem.

A. Fair file delivery

The performance metric is the time average delivery rate of
files to user k, denoted by rk. Hence our objective is expressed
with respect to the vector of delivery rates rrr. We are interested
in the fair file delivery problem:

r∗ =arg max
r∈Λ

K∑
k=1

g(rk), (1)

where Λ denotes the set of all feasible delivery rate vectors–
clarified in the following subsection–and the utility function
corresponds to the alpha fair family of concave functions
obtained by choosing:

g(x) =

{
(d+x)1−α

1−α , α 6= 1

log(1 + x/d), α = 1
(2)

for some arbitrarily small d > 0 (used to extend the domain
of the functions to x = 0). Tuning the value of α changes
the shape of the utility function and consequently drives the
system performance r∗ to different points: (i) α = 0 yields
max sum delivery rate, (ii) α → ∞ yields max-min delivery
rate [15], (iii) α = 1 yields proportionally fair delivery rate
[16]. Choosing α ∈ (0, 1) leads to a tradeoff between max sum
and proportionally fair delivery rates.

The optimization (1) is designed to allow us tweak the
performance of the system; we highlight its importance by an
example. Suppose that for a 2-user system Λ is given by the
convex set shown on figure 1. Different boundary points are
obtained as solutions to (1). If we choose α = 0, the system
is operated at the point that maximizes the sum r1 + r2. The
choice α→∞ leads to the maximum r such that r1 = r2 = r,
while α = 1 maximizes the sum of logarithms. The operation
point A is obtained when we always broadcast to all users at the
weakest user rate and use [2] for coded caching transmissions.
Note that this results in a significant loss of efficiency due to
the variations of the fading channel, and consequently A lies
in the interior of Λ. We may infer that the point α → ∞ is
obtained by avoiding transmissions to users with instantaneous
poor channel quality but still balancing their throughputs in the
long run.

B. Transmission model

To analyze the set of feasible rate vectors Λ we need to zoom
in the detailed model of transmissions.

Caching model. There are N equally popular files
W1, . . . ,WN , each F bits long. The files are available to the
base station. User k is equipped with cache memory Zk of
MF bits, where M ∈ [0, N]. Caching placement is performed
during off-peak hour, and the goal is to fill the caches up to
the memory constraint with selected bits. To this end, we need
to select K caching functions φk : FNF2 → FMF

2 which map
the files W1, . . . ,WN into the cache contents

Zk , φk(W1, . . . ,WN), ∀k = 1, . . . ,K.

The caching functions can be used to cache a few entire files,
or a small fraction from each file, or even coded combinations
of subfiles [2], [8]. It is important to note that the caching func-
tions are selected once, without knowledge of future requests,
and are fixed throughout our system operation.1

Downlink channel model. We consider a standard block-
fading broadcast channel, such that the channel state remains
constant over a slot of Tslot channel uses and changes from one
slot to another in an i.i.d. manner. The channel output of user
k in any channel use of slot t is given by

yyyk(t) =
√
hk(t)xxx(t) + νk(t), (3)

where the channel input xxx ∈ CTslot is subject to the power
constraint E[‖xxx‖2] ≤ PTslot; νk(t) ∼ NC(0, ITslot

) are
additive white Gaussian noises with covariance matrix identity
of size Tslot, assumed independent of each other; {hk(t) ∈ C}
are channel fading coefficients ∼ β2

kexp(1) independently
distributed across time and users, with βk denoting the path-
loss parameter of user k.

Encoding and transmissions. The transmissions aim to
contribute information towards the delivery of a specific vector
of file requests ddd(t), where dk(t) ∈ {1, . . . , N} denotes the
index of the requested file by user k in slot t. Here N is the
video library size, typically in the order of 10K. The requests
are generated randomly, and whenever a file is delivered to user
k, the next request of this user will be for another randomly
selected file.

At each time slot, the base station observes the channel state
hhh(t) = (h1(t), . . . , hK(t)) and the request vector up to t, dddt,
constructs a transmit symbol using the encoding function ft :
{1, .., N}Kt ×CK → CTslot .

xxx(t) = ft
(
dddt,hhh(t)

)
,

Finally, it transmits a codeword xxx(t) for the Tslot channel
uses over the fading broadcast channel in slot t . The encoding
function may be chosen at each slot to contribute information
to a selected subset of users J (t) ⊆ {1, . . . ,K}. This allows
several possibilities, e.g. to send more information to a small
set of users with good instantaneous channel qualities, or less
information to a large set that includes users with poor quality.

1A reasonable extension is to enable infrequent updates of the caching
placement phase.

Decoding. At slot t, each user k observes the local cache
contents Zk and the sequence of channel outputs so far
yk(τ), τ = 1, . . . , t and employs a decoding function ξk to
determine the decoded files. Let Dk(t) denote the number of
files decoded by user k after t slots. The decoding function ξk
is a mapping

ξk : CTslott ×CKt × FFM2 × {1, .., N}Kt → FFDk(t)
2 .

The decoded files of user k at slot t are given by
ξk(yTslott

k , Zk,hhh
t, dddt), and depend on the channel outputs and

states up to t, the local cache contents, and the requested files
of all users up to t. A file is incorrectly decoded if it does not
belongs to the set of requested files. The number of incorrectly
decoded files are then given by |∪t{ξk(t)}\dtk| and the number
of correctly decoded files at time t is:

Ck(t) = Dk(t)− | ∪t {ξk(t)} \ dtk|

Definition 1 (Feasible rate). A rate vector rrr = (r1, . . . , rK) is
said to be feasible rrr ∈ Λ if there exist functions ([φk], [ft], [ξk])
such that:

rk = lim sup
t→∞

Ck(t)

t
,

where the rate is measured in file/slot.

In contrast to past works which study the performance of
one-shot coded caching [2], [6], [8], our rate metric measures
the ability of the system to continuously deliver files to users.

C. Code-constrained rate region

Finding the optimal policy is very complex. In this paper,
we restrict the problem to specific class of policies given by
the following mild assumptions:

Definition 2 (Admissible class policies ΠCC). The admissible
policies have the following characteristics:

1) The caching placement and delivery follow the decentral-
ized scheme [6].

2) The users request distinct files, i.e., the ids of the re-
quested files of any two users are different.

Since we restrict our action space, the delivery rate feasibility
region, ΛCC , of the class of policies ΠCC is smaller than the
one for the original problem Λ. However, these restrictions
allow us to come up with a concrete solution approach. Note
that the optimal cache and transmission design policy is already
a very hard problem even in the simple case of broadcast
transmissions with a fixed common rate, and the method in
[2], [6] are practical approaches with good performance. In
addition, looking at demand IDs when combining files would
be very complex and, because of the big library sizes, is
not expected to bring substantial gains (it is improbable that
two users will make request for the same file in close time
instances).

III. OFFLINE CODED CACHING

In this section we briefly review decentralized coded caching,
first proposed in [6], and used by all admissible policies ΠCC .
We set m = M

N the normalized memory size. Under the
memory constraint of MF bits, each user k independently
caches a subset of mF bits of file i, chosen uniformly at random
for i = 1, . . . , N . By letting Wi|J denote the sub-file of Wi

stored exclusively in the cache memories of the user set J , the
cache memory Zk of user k after decentralized placement is
given by

Zk = {Wi | J : ∀J ⊆ [K],∀J 3 k, ∀i = 1, . . . , N}. (4)

The size of each sub-file measured in bits is given by

|Wi | J | = m|J | (1−m)
K−|J | (5)

as F → ∞. The above completely determine the caching
functions.

Once the requests of all users are revealed, the offline scheme
proceeds to the delivery of the requested files (delivery phase).
Assuming that user k requests file k, i.e. dk = k, the server
generates and conveys the following codeword simultaneously
useful to the subset of users J :

VJ = ⊕k∈JWk|J \{k}, (6)

where ⊕ denotes the bit-wise XOR operation. The main idea
here is to create a codeword useful to a subset of users by
exploiting the receiver side information established during the
placement phase. It is worth noticing that the coded delivery
with XORs significantly reduces the number of transmissions.
Compared to uncoded delivery, where the sub-files are sent
sequentially and the number of transmissions are equal to
|J |× |Wk|J \{k}|, the coded delivery requires the transmission
of |Wk|J \{k}|, yielding a reduction of a factor |J |. In a
practical case of N > K, it has been proved that decentralized
coded caching achieves the total number of transmissions,
measured in the number of files, given by [6]

Ttot(K,m) =
1

m
(1−m)

{
1− (1−m)

K
}
. (7)

On the other hand, in uncoded delivery, the number of trans-
missions is given by K(1 − m) since it exploits only local
caching gain at each user. For a system with K = 30 users and
normalized memory of m = 1/3, the minimum transmissions
required by uncoded delivery is 20 and that of decentralized
coded caching is 2, yielding a gain of factor 10.

In order to further illustrate the placement and delivery of
decentralized coded caching, we provide an three-user example.

Example 1. For the case of K = 3 users in Fig.2, let us
assume that user 1, 2, 3, requests file A,B,C, respectively.
After the placement phase, a given file A will be partitioned
into 8 subfiles. Codewords to be sent are the following
• A∅, B∅ and C∅ to user 1, 2 and 3 respectively.
• A2⊕B1 is intended to users {1, 2}. Once received, user 1

decodes A2 by combining the received codeword with B1

given in its cache. Similarly user 2 decodes B1. The same

Fig. 2. Decentralized coded caching for K = 3

approach holds for codeword B3⊕C2 to users {2, 3} and
codeword A3 ⊕ C1 to users {1, 3}

• A23 ⊕ B13 ⊕ C12 is intended users 1, 2, 3. User 1 can
decode A23 by combining the received codeword with
{B13, C12} given in its cache. The same approach is used
for user 2, 3 to decode B13, C12 respectively.

IV. BROADCASTING PRIVATE AND COMMON MESSAGES

In this section, we address the question on how the transmit-
ter shall convey private and multiple common messages, each
intended to a subset of users, while opportunistically exploiting
the underlying wireless channel. We start by remarking that the
channel in (3) for a given channel realization hhh corresponds
to the Gaussian degraded broadcast channel. Without loss of
generality, let us assume h1 ≥ · · · ≥ hK so that the following
Markov chain holds.

X ↔ Y1 ↔ · · · ↔ YK .

The capacity region of the degraded broadcast channel for
K private messages and a common message is well-known
[13]. In this section, we consider a more general setup where
the transmitter wishes to convey 2K − 1 mutually independent
messages, denoted by {MJ }, where MJ denotes the message
intended to the users in subset J ⊆ {1, . . . ,K}. Each user k
must decode all messages {MJ } for J 3 k. By letting RJ
denote the multicast rate of the message MJ , we say that the
rate-tuple RRR ∈ R2K−1

+ is achievable if there exists encoding
and decoding functions which ensure the reliability and the
rate condition. The capacity region is defined as the supremum
of the achievable rate-tuple, where the rate is measured in
bit/channel use. Then we prove [25] the following result.

Theorem 1. The capacity region Γ(hhh) of a K-user degraded
Gaussian broadcast channel with fading gains h1 ≥ · · · ≥ hK
and 2K − 1 independent messages {MJ } is given by

R1 ≤ log(1 + h1α1P) (8)∑
J⊆{1,...,k}:k∈J

RJ ≤ log
1 + hk

∑k
j=1 αjP

1 + hk
∑k−1
j=1 αjP

k = 2, . . . ,K

(9)

for non-negative variables {αk} such that
∑K
k=1 αk ≤ 1.

The achievability builds on superposition coding at the
transmitter and successive interference cancellation at receivers.
For K = 3, the transmit signal is simply given by

x = x1 + x2 + x3 + x12 + x13 + x123

where {xJ } are mutually independent Gaussian distributed
random variables satisfying the power constraint and xJ de-
notes the signal corresponding to the message MJ intended
to the subset J ⊆ {1, 2, 3}. User 3 (the weakest user)
decodes M̃3 = {M3,M13,M23,M123} by treating all the other
messages as noise. User 2 decodes first the messages M̃3 and
then jointly decodes M̃2 = {M2,M12}. Finally, user 1 (the
strongest user) successively decodes M̃3, M̃2 and, finally, M1.

Later in our online coded caching scheme we will need the
capacity region Γ(hhh), and more specifically, we will need to
characterize its boundary. To this end, it suffices to consider
the weighted sum rate maximization:

max
rrr∈Γ(hhh)

∑
J :J⊆{1,...,K}

θJ rJ . (10)

We first simplify the problem using the following theorem.

Theorem 2. The weighted sum rate maximization with 2K − 1
variables in (10) reduces to a simpler problem with K vari-
ables, given by

f(α) =

K∑
k=1

θ̃k log
1 + hk

∑k
j=1 αjP

1 + hk
∑k−1
j=1 αjP

. (11)

where θ̃k denotes the largest weight for user k

θ̃k = max
K:k∈K⊆{1,...,k}

θK.

Proof. The proof builds on the simple structure of the capacity
region. We first remark that for a given power allocation of
other users, user k sees 2k−1 messages {WJ } for all J such
that k ∈ J ⊆ {1, . . . , k} with the equal channel gain. For a
given set of {αj}k−1

j=1 , the capacity region of these messages is
a simple hyperplane characterized by 2k−1 vertices Ckeeei for
i = 1, . . . , 2k−1, where Ck is the sum rate of user k in the
RHS of (9) and eeei is a vector with one for the i-th entry and
zero for the others. Therefore, the weighted sum rate seen is
maximized for user k by selecting the vertex corresponding to
the largest weight, denoted by θ̃. This holds for any k.

We provide an efficient algorithm to solve this power alloca-
tion problem as a special case of the parallel Gaussian broadcast
channel studied in [23, Theorem 3.2]. Following [23], we define
the rate utility function for user k given by

uk(z) =
θ̃k

1/hk + z
− λ (12)

where λ is a Lagrangian multiplier. The optimal solution
corresponds to selecting the user with the maximum rate utility
at each z and the resulting power allocation for user k is

α∗k =

{
z : [max

j
uj(z)]+ = uk(z)

}
/P (13)

with λ satisfying

P =

[
max
k

θ̃k
λ
− 1

hk

]
+

. (14)

V. PROPOSED ONLINE DELIVERY SCHEME

This section presents first the queued delivery network and its
feasible rate region of arrival rates, then describes the proposed
control policy.

A. Solution plan

At each time slot t, the controller admits ak(t) files to be
delivered to user k, and hence ak(t) is a control variable.2 As
our model dictates, the succession of requested files for user k
is determined uniformly at random.

Queueing model. The base station organizes the information
into the following types of queues:

1) User queues to store admitted files, one for each user.
The buffer size of queue k is denoted by Sk(t) and
expressed in number of files.

2) Codeword queues to store codewords to be multicast.
There is one codeword queue for each subset of users
J ⊆ {1, . . . ,K}. The size of codeword queue J is
denoted by QJ (t) and expressed in bits.

A queueing policy π performs the following operations: (i)
decides how many files to admit into the user queues Sk(t)
in the form of (ak(t)) variables, (ii) then it decides how
to combine together files from different user queues to be
encoded into the form of multiple codewords which represent
the required broadcast transmissions for the reception of this
file–these codewords are stored in the appropriate codeword
queues QJ (t), (iii) and last it decides the encoding function
ft. (ii) and (iii) are further clarified in the next section.

Definition 3 (Stability). A queue S(t) is said to be (strongly)
stable if

lim sup
T→∞

1

T

T−1∑
t=0

E [S(t)] <∞.

A queueing system is said to be stable if all its queues are
stable. Moreover, the stability region of a system is the set of
all arrival rates such that the system is stable.

The above definition implies that the average delay of each
job in the queue is finite. In our problem, if we develop a
policy that keeps user queues SSS(t) stable, then all admitted files
will, at some point, be combined into codewords. If in addition
codeword queues QQQ(t) are stable, then all generated codewords
will reach their destinations, meaning that all receivers will be
able to decode the admitted files that they requested.

Lemma 3. The region of all feasible delivery rates Λ is the
same as the stability region of the system (i.e. the set of
all demand arrival rates for which there exists a policy that
stabilizes the queueing system).

2We note that random file arrivals can be directly captured with the addition
of an extra queue [14], which we avoid to simplify exposition.

Let ak = lim sup
t→∞

1
t

∑t−1
t=0 E [ak(t)] , denote the time average

number of admitted files for user k. Lemma 3 implies the
following Corollary.

Corollary 4. Solving (1) is equivalent to finding a policy π
such that

aπ = argmax

K∑
k=1

gk(ak) (15)

s.t. the system is stable.

B. Feasible Region

Contrary to the offline coded caching in [6], we propose an
online delivery scheme consisting of the following three blocks.
Each block is operated at each slot.

1) Admission control: At the beginning of each slot, the
controller decides how many requests for each user,
ak(t) should be pulled into the system from the infinite
reservoir.

2) Routing: The cumulative accepted files for user k are
stored in the admitted demand queue whose size is given
by Sk(t) for k = 1, . . . ,K. The server decides the
combinations of files to perform coded caching. The
decision at slot t for a subset of users J ⊆ {1, ..,K},
denoted by σJ (t) ∈ {0, 1, . . . , σmax}, refers to the
number of combined requests for this subset of users. It
is worth noticing that offline coded caching lets σJ = 1
for J = {1, . . . ,K} and zero for all the other subsets.
The size of the queue Sk evolves as:

Sk(t+ 1) =

[
Sk(t)−

∑
J :k∈J

σJ (t)

]+

+ ak(t) (16)

If σJ (t) > 0, the server creates codewords by applying
offline coded caching explained in Section [] for this
subset of users as a function of the cache contents
{Zj : j ∈ J }.

3) Scheduling: The codewords intended to the subset J of
users are stored in codeword queue whose size is given
by QI(t) for I ⊆ {1, . . . ,K}. Given the instantaneous
channel realization hhh(t) and the queue state {QI(t)}, the
server performs scheduling and rate allocation. Namely,
at slot t, it determines the number µI(t) of bits per
channel use to be transmitted for the users in subset I.
By letting bJ ,I denote the number of bits generated for
codeword queue I ⊆ J when offline coded caching is
performed to the users in J , codeword queue I evolves
as

QI(t+ 1) = [QI(t)− TslotµI(t)]
+

+
∑
J :I⊆J

bJ ,IσJ (t)

where bJ ,I = m|I|(1−m)|J |−|I|−1.
In order determine our proposed policy, namely the set of

decisions {aaa(t),σ(t),µ(t)} at each slot t, we first characterize
the feasible region Λ as a set of arrival rates aaa. We let πh
denote the probability that the channel state at slot t is hhh ∈ H
where H is the set of all possible channel states. We let Γ(hhh)

denote the capacity region for a fixed channel state h. Then we
have the following

Theorem 5 (Feasibility region ΛCC). A demand rate vector
is feasible, i.e. āaa ∈ ΛCC , if and only if there exist µ ∈∑

h∈H πhΓ(h), σ̄I ∈ [0, σmax],∀I ⊆ {1, . . . ,K} such that:∑
J :k∈J

σ̄J ≥ āk,∀k = 1, . . . ,K (17)

TslotµI ≥
∑
J :I⊆J

bJ ,I σ̄J ,∀I ∈ 2K. (18)

Constraint (17) says that the service rate at which admitted
demands are combined to form codewords is greater than
the arrival rate, while (18) implies that the long-term average
transmission rate µI for the subset I of users should be higher
than the rate at which bits of generated codewords for this
group arrive. In terms of the queueing system defined, these
constraints impose that the service rates of each queue should
be greater than their arrival rates, thus rendering them stable.

Theorem 5 implies that the set of feasible average delivery
rates is a convex set.

C. Admission Control and Routing

In order to perform the utility maximization (15), we need
to introduce one more set of queues. These queues are virtual,
in the sense that they do not hold actual file demands or bits,
but are merely counters to drive the control policy. Each user
k is associated with a queue Uk(t) which evolves as follows:

Uk(t+ 1) = [Uk(t)− ak(t)]
+

+ γk(t) (19)

where γk(t) represents the arrival process to the virtual queue
and is given by

γk(t) = arg max
0≤x≤γk,max

[V gk(x)− Uk(t)x] (20)

In the above, V > 0 is a parameter that controls the utility-
delay tradeoff achieved by the algorithm (see Theorem 6).

The general intuition here is as follows: Observe that the
number ak(t) of admitted demands is the service rate for the
virtual queues Uk(t). The control algorithm actually seeks to
optimize the time average of the virtual arrivals γk(t). However,
since Uk(t) is stable, its service rate, which is the actual
admission rate, will be greater than the rate of the virtual
arrivals, therefore giving the same optimizer. Stability of all
other queues will guarantee that admitted files will be actually
delivered to the users.

We present our on-off policy for admission control and
routing. For every user k, admission control chooses ak(t)
demands given by

ak(t) = γk,max1{Uk(t) ≥ Sk(t)} (21)

For every subset J ⊆ {1, . . . ,K}, routing combines σJ (t)
demands of users in J given by

σJ (t) = σmax1

∑
k∈J

Sk(t) >
∑
I:I⊆J

bJ ,I
F 2

QI(t)

 . (22)

Fig. 3. An example of the queueing model for a system with 3 users. Dashed
lines represent wireless transmissions, solid circles files to be combined and
solid arrows codewords generated.

D. Scheduling and Transmission
In order to stabilize all codeword queues, the scheduling and

resource allocation explicitly solve the following weighted sum
rate maximization at each slot t where the weight of the subset
J corresponds to the queue length of QJ

µ(t) = arg max
rrr∈Γ(hhh(t))

∑
J⊆{1,...,K}

QJ (t)rJ . (23)

We propose to apply the power allocation algorithm in Section
IV to solve the above problem by sorting users in a decreasing
order of channel gains and treating QJ (t) as θJ . In adition, we
assume that the number of channel uses in one coherence block
is large enough such that the decoding error from choosing
channel codes with rate µ(t) is very small. In this case, no
feedback from the receivers is given.

E. Example
We conclude this section by providing an example of our

proposed online delivery network for K = 3 users as illustrated
in Fig. 3. At slot t the server decides to combine W1 requested
by user 2 with W8 requested by user 2 and to process W4 re-
quested by user 1 uncoded. Therefore σ{1,2}(t) = σ{1}(t) = 1
and σJ (t) = 0 otherwise. Given this codeword construction,
codeword queues have inputs as described in Table I. In

TABLE I
CODEWORD QUEUES INPUTS.

Queue Input
Q{1} W8,∅; W8|3

W4|∅; W4|{2}; W4|{3}; W4|{2,3}
Q{2} W1|∅; W1|{3}
Q{1,2} W1|{1} ⊕W8|{2}; W1|{1,3} ⊕W8|{2,3}

addition, data from queues Q{2}(t), Q{2.3}(t) are transmitted.

VI. PERFORMANCE ANALYSIS

In thi section, we present the main result of the paper,
that our proposed online algorithm leads to close to optimal
performance for all policies in the class ΠCC :

Theorem 6. Let r̄πk the mean time-average delivery rate for
user k achieved by the proposed policy. Then

K∑
k=1

gk(r̄πk) ≥ max
r̄rr∈ΛCC

K∑
k=1

gk(r̄k)−O
(

1

V

)

lim sup
T→∞

1

T

T−1∑
t=0

E
{
Q̂(t)

}
= O(V) ,

where Q̂(t) is the sum of all queue lengths at the beginning of
time slot t, thus a measure of the mean delay of file delivery.

The above theorem states that, by tuning the constant V ,
the utility resulting from our online policy can be arbitrarily
close to the optimal one, where there is a tradeoff between the
guaranteed optimality gap O(1/V) and the upper bound on the
total buffer length O(V).

For proving the Theorem, we use the Lyapunov function

L(t) =
1

2

(
K∑
k=1

U2
k (t) + S2

k(t) +
∑
I∈2K

1

F 2
Q2
I(t)

)
and specifically the related drift-plus-penalty quantity,
defined as: E {L(t+ 1)− L(t)|S(t),Q(t),U(t)} −
V E

{∑K
k=1 g(γk(t))|S(t),Q(t),U(t)

}
. The proposed

algorithm is such that it minimizes (a bound on) this
quantity. The main idea is to use this fact in order to compare
the evolution of the drift-plus-penalty under our policy and
two ”static” policies, that is policies that take random actions
(admissions, demand combinations and wireless transmissions),
drawn from a specific distribution, based only on the channel
realizations (and knowledge of the channel statistics). We can
prove from Theorem 4 that these policies can attain every
feasible delivery rate. The first static policy is one such that it
achieves the stability of the system for an arrival rate vector
aaa′ such that aaa′ + δ ∈ ∂ΛCC . Comparing with our policy, we
deduce strong stability of all queues and the bounds on the
queue lengths by using a Foster-Lyapunov type of criterion.
In order to prove near-optimality, we consider a static policy
that admits file requests at rates aaa∗ = arg maxaaa

∑
k gk(ak)

and keeps the queues stable in a weaker sense (since the
arrival rate is now in the boundary ΛCC). By comparing the
drift-plus-penalty quantities and using telescopic sums and
Jensen’s inequality on the time average utilities, we obtain the
near-optimality of out proposed policy.

The full proof is in out technical report [25].

VII. NUMERICAL EXAMPLES

In this section, we compare our proposed delivery scheme
with the following two other schemes, all building on decen-
tralized cache placement in (4) and (5).
• Unicast opportunistic scheduling: for any request, the

server sends the remaining (1 − m)F bits to the corre-
sponding user without combining any files. Here we only
exploit the local caching gain. In each slot the serve sends
with full power to user

(a) Sum rate (α = 0) (b) Proportional fair utility (α = 1)

Fig. 4. Performance results vs number of users for α = 0 and α = 1

k∗(t) = arg max
k

log (1 + hk(t)P)

Tk(t)α
,

where Tk(t) =
∑

1≤τ≤t−1 µk(τ)

(t−1) is the empirical average
rate for user k up to slot t.

• Standard coded caching: we use decentralized coded
caching among all K users. For the delivery, non-
opportunistic TDMA transmission is used. The server
sends sequentially codewords VJ to the subset of users
J at the weakest user rate among J :

µJ (t) = log

(
1 + P min

k∈J
(hk(t))

)
.

Once the server has sent codewords {VJ }∅6=J⊆{1,..,K},
every user is able to decode one file. Then the process is
repeated for all the demands.

We consider the system with normalized memory of m =
0.6, power constraint P = 10dB, file size F = 103 bits
and number of channel uses per slot Tslot = 102. We divide
users into two classes of K/2 users each: strong users with
βk = 1 and weak users with βk = 0.2. We compare the
three algorithms for the cases where the objective of the
system is sum rate maximization (α = 0) and proportional
fairness (α = 1). The results are depicted in Fig. 4a and 4b,
respectively.

Regarding the sum rate objective, standard coded caching
performs very poorly, indicative of the adverse effect of users
with bad channel quality. It is notable that our proposed
scheme outperforms the unicast opportunistic scheme, which
maximizes the sum rate if only private information packets are
to be conveyed. The relative merit of our scheme increases as
the number of users grows. This can be attributed to the fact that
our scheme can exploit any available multicast opportunities.
Our result here implies that, in realistic wireless systems, coded
caching can indeed provide a significant throughput increase
when an appropriate joint design of routing and opportunistic
transmission is used.

Regarding the proportional fair objective, we can see that
the average sum utility increases with a system dimension for
three schemes although our proposed scheme provides a gain
compared to the two others.

VIII. CONCLUSIONS

We studied the content delivery system over the block
fading broadcast channel where users may have asymmetric

fading statistics. Building on decentralized coding caching, we
proposed a novel online delivery algorithm to ensure alpha
fairness in the long term delivery rates. Our results demonstrate
that an appropriate joint design of routing and opportunistic
transmission enables to overcome the detrimental effect of naive
coded caching limited by the worst channel users and hence
significantly increase the system performance.

REFERENCES

[1] “White paper: Cisco VNI Forecast and Methodology, 2015-2020”, Tech.
Report, 2015.

[2] M. Maddah-Ali and U. Niesen, “Fundamental Limits of Caching,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[3] G. S. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless
caching: technical misconceptions and business barriers”, IEEE Commu-
nications Magazine, 2016.

[4] M. Ji, G. Caire, A. Molisch, “Fundamental Limits of Distributed Caching
in D2D Wireless Networks” , arXiv/1304.5856, 2013.

[5] M. Ji, A. Tulino, J. Llorca, and G. Caire, “Order-Optimal Rate of Caching
and Coded Multicasting with Random Demands”, arXiv:1502.03124,
2015.

[6] M. Maddah-Ali and U. Niesen, “Decentralized Coded Caching Attains
Order-Optimal Memory-Rate Tradeoff”, IEEE/ACM Trans. Netw., vol.
23, no. 4, pp. 1029–1040, 2015.

[7] M. Maddah-Ali and U. Niesen, “Coded Caching with Nonuniform
Demands”, in IEEE INFOCOM Workshops, 2014.

[8] R. Pedarsani, M. Maddah-Ali, and U. Niesen, “Online Coded Caching,”
in IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 836-845, 2016.

[9] S. S. Bidokhti, M. Wigger, and R. Timo, “Noisy Broadcast Networks
with Receiver Caching”, arXiv preprint arXiv:1605.02317, 2016.

[10] J. Zhang, and P. Elia, ”Wireless Coded Caching: a Topological Perspec-
tive”. arXiv:1606.08253, 2016.

[11] K-H. Ngo, S. Yang, and M. Kobayashi, “Cache-Aided Content Delivery
in MIMO Channels”, in Proc. Allerton, IL, USA, 2016.

[12] U. Niesen M. Maddah-Ali “Coded Caching for Delay-Sensitive Content”,
in IEEE ICC, pp. 5559-5564, 2015.

[13] A. El Gamal and Y. H. Kim, “Network Information Theory”, Cambridge
university press, 2011.

[14] M. Neely, “Stochastic Network Optimization with Application to Com-
munication and Queueing Systems”, Morgan & Claypool, 2010.

[15] J. Mo and J. Walrand, “Fair end-to-end window-based congestion con-
trol”, IEEE/ACM Trans. Netw. , Vol. 8, No. 5, Oct. 2000.

[16] F. Kelly, “Charging and Rate Control for Elastic Traffic”, European
Transactions on Telecommunications, 1997.

[17] A. L. Stolyar, “On the asymptotic optimality of the gradient scheduling
algorithm for multiuser throughput allocation.” Operations Research Vol.
53 No. 1, 2005.

[18] R. Knopp and P. A. Humblet, “Information capacity and power control in
single-cell multiuser communications,” in IEEE ICC, Seattle, WA, 1995.

[19] H. Shirani-Mehr, G. Caire and M. J. Neely, “MIMO Downlink Scheduling
with Non-Perfect Channel State Knowledge,” in IEEE Trans. Commun.
, vol. 58, no. 7, pp. 2055-2066, July 2010.

[20] G. Caire, R. R. Muller and R. Knopp, “Hard Fairness Versus Proportional
Fairness in Wireless Communications: The Single-Cell Case,” in IEEE
Trans. Inf. Theory, vol. 53, no. 4, pp. 1366-1385, April 2007.

[21] K. Seong, R. Narasimhan, and J. Cioffi, “Queue Proportional Scheduling
via Geometric Programming in Fading Broadcast Channels”, in IEEE
JSAC, vol. 24, no. 8, Aug 2006.

[22] A. Eryilmaz, and R. Srikant, and J. R. Perkins, “Throughput-optimal
Scheduling for Broadcast Channels”, in Proc. ITCom, Denver, CO,
August 2001.

[23] D. Tse, “Optimal Power Allocation over Parallel Gaussian Broadcast
Channels”, unpublished, 1999.

[24] M. Neely, E. Modiano, and C.-P. Li, “Fairness and Optimal Stochastic
Control for Heterogeneous Networks”, IEEE/ACM Trans. Netw., 2005.

[25] ”Alpha Fair Coded Caching: Technical Report”, https://www.dropbox.
com/s/x2qeyi0bojp79h6/AlphaFairCodedCachingTR.pdf?dl=0, 2017

