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Abstract—This paper studies Ultra-Reliable Low-Latency
Communications (URLLC), an important service class of emerg-
ing 5G networks. In this class, multiple unreliable transmissions
must be combined to achieve reliable latency: a user experiences
a frame success when the entire I bits are received correctly
within a deadline, and its latency performance is reliable when
the frame success rate is above a threshold. When jointly serving
multiple users, a natural URLLC scheduling question arises:
given the uncertainty of the wireless channel, can we find a
scheduling policy that allows all users to meet a target reliable
latency objective? This is called the URLLC SLA Satisfaction
(USS) problem. The USS problem is an infinite horizon con-
strained Markov Decision Process, for which, after establishing
a convenient property, we are able to derive an optimal policy
based on dynamic programming. Our policy suffers from the
curse of dimensionality, hence for large instances we propose
a class of knapsack-inspired computationally efficient - but not
necessarily optimal - policies. We prove that every policy in
that class becomes optimal in a fluid regime, where both the
deadline and L scale to infinity, while our simulations show that
the policies perform well even in small practical instances of the
USS problem.

I. INTRODUCTION

Ultra-reliable low-latency communications (URLLC) refers
to a use case of emerging 5G wireless networks characterized
by small amount of data and strict latency and reliability
constraints. Such high fidelity communications are essential
to invite vertical applications to mobile networks, such as
industry 4.0 and autonomous transportation to name a few, and
to enable real-time applications like reactive virtual reality and
remote surgery [1]. According to [2], 5G reliability is defined
as the success probability of transmitting a layer 2/3 packet
within a required user plane latency, which is the time it takes
to deliver a packet from the radio protocol layer 2/3 ingress
point to the radio protocol layer 2/3 egress point of the radio
interface. The associated requirement for the URLLC use case
is 1 — 10~° probability of receiving a layer 2 protocol data
unit of 32 bytes within 1 ms, i.e., a delayed delivery beyond
1 ms is allowed only once every 10000 packets.

In pursuit of such extreme requirements for latency and
reliability, a key challenge is how to strategically arrange
short-packet transmissions in order to offer guaranteed overall
latency when the success of each individual transmission is
intrinsically unreliable. The main approach is to diversify
transmissions over resources, including multiple antennas,
codes, frequencies, and time slots. In this paper we consider
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Fig. 1. A base station transmitting short packets to multiple users with the

goal that L bits are received correctly before a deadline.

the case where the resource diversification is over time; we
will design multiple retransmissions in order to achieve the
required reliable performance.

We study a K-user URLLC downlink as depicted in Fig.1.
Time is divided in slots and a user is said to experience a
frame success event if L bits are correctly received before
the frame deadline of 7" slots. Accordingly, a user achieves its
Service Level Agreement (SLA) if the empirical probability of
frame success is higher than a given threshold. At each slot,
a scheduling policy decides which user is served and how
many bits are transmitted to that user; naturally, the higher
the number of information bits in a given time span, the
higher the probability of error. The objective of this paper is to
design a scheduling policy that satisfies the SLAs of all users,
whenever this is feasible. We call this problem the URLLC
SLA Satisfaction problem, in short USS.

Our contributions can be summarized as follows:

o We define the region of reliable latencies Q as the set
of all SLA vectors g* which are achievable in a URLLC
system by any scheduling policy, and we show that the
optimal solution of USS can be achieved by Markovian
policies.

o Exploiting the Markovian structure, we decompose the



USS problem without loss of optimality into (i) an inter-
frame policy that dynamically adjusts user weights on a
frame by frame basis and (ii) an intra-frame policy that
solves a finite horizon weighted maximization, which is
a Markov Decision Process (MDP). We thus provide a
dynamic programming-based intra-frame policy, which
combined with the dynamic weights optimally solves
USS.

e Due to the well-known curse of dimensionality, the
policy quickly becomes computationally intractable when
the input K, L, T grows; motivated by this complexity,
we propose a class of knapsack-inspired policies which
are poly-time computable, and we prove that they are
asymptotically e—optimal in instances of USS where we
must deliver vL bits before a vT" deadline, and v — oo.

A. Related Work

Our work is related to the line of research in delay perfor-
mance of queuing systems and scheduling policies. Prior work
uses large deviations theory to examine the delay violation
probability as the delay threshold becomes large [3] or by
fixing the delay threshold and examining the delay violation
probability as the users and the parallel channels grow large
[4]. Two other systematic approaches are the theory of ef-
fective capacity/bandwidth, e.g. [5], [6], and the stochastic
network calculus, e.g. [7], where approximations of the service
and arrival processes are used to provide a tractable evaluation
of the delay performance of resource allocation policies.

All the above references consider soft delay requirements,
in the sense that a packet that exceeds the target delay still
remains in the system and eventually gets delivered. Represen-
tative works on a hard deadline setting (where packets that did
not meet their deadline are dropped) are [8] that analyzes the
heuristic to schedule the packet closer to its deadline on a good
channel state, and [9] which employs a dynamic programming
problem formulation to obtain an efficient heuristic. Relatively
recently, a unifying theory of resource allocation for deadline-
constrained traffic has been developed, cf. [10], [11]. The
main concept there is timely throughput, that is the fraction
of packets that get delivered before their respective deadlines.
This theory has been applied and extended to various settings,
including scheduling under fading channels [12] and multi-
casting [13]. All aforementioned works consider either that
a packet is transmitted in a single slot or that transmissions
are without errors. Finally, a recent work [14] considers the
problem of puncturing in OFDMA systems with URLLC
and users with broadband traffic. The authors assume that
URLLC users should be scheduled immediately on the time
slot they arrive and the focus is on maximizing the utility of
the broadband users subject to scheduling all arriving URLLC
users.

In this paper, we expand the timely throughput framework
to model URLLC systems accommodating transmissions of
fragments of a packet, where the higher the number of
information bits in a transmission the greater the probability
of error. We show how this complicates the problem to the

point of invalidating insights from previous works; for instance
priority policies are no longer optimal for a large class of
problems (see Example 1).

II. SYSTEM MODEL

We consider a wireless downlink with one base station and
K users, as in Fig. 1. Time is divided in slots and we impose
strict latency constraints in the following manner: an L-bit
packet has to be delivered to each user within T slots, else it
is dropped'. More specifically, we split the L-bit packet into
shorter messages containing a variable number of information
bits, and we attempt several transmissions per user until the
L bits are correctly received.

A. Communication Model

The wireless channel between the base station and each user
is assumed to be i.i.d. block fading, staying constant within one
frame and changing between frames.> We denote with hy[m)]
the channel state of user k at frame m, and with ~v;[m] =
P|hy[m]|? the corresponding receiver SNR, where P is the
transmit SNR.

To model the transmission error probability, we focus on
the fact that URLLC must rely on short-message transmis-
sions which trade off blocklength (latency), efficiency, and
probability of error. In classical information theory every rate
below the capacity of a channel can be achieved with an
arbitrarily low codeword error probability given sufficiently
long messages. Here, however, we focus on transmitting short
messages, where asymptotic information theoretic results do
not apply [15]. Every transmission has an associated non-zero
error probability, which in our case is approximated by [16]

pe(1.b) ~ Q (nlog2 (1+’y)b+0.510g2n) 0
V(y)n

where n is the number of channel uses, b the number of
transmitted bits, v is the SNR, and where

1
(1+x)?
stands for the so-called channel dispersion and Q(.) is the
Gaussian Q-function. We remark that i) the above formula
assumes perfect knowledge of ~ at the transmitter and error-

free notification of the transmission outcome, and ii) the
algorithms we design are not limited to the model in (1).

Vizg)=1-

B. Scheduling Reliable Latencies

At each slot ¢, the base station can schedule only one user,
denoted with k(t). The transmission carries b(¢) information
bits, chosen from a finite set B = {bl,...,b|5‘}, as it is
common in practical schemes with modulation and coding.

'Note that we implicitly assume that packets for all users arrive at the
same time and all users have the same latency requirement, though the ideas
presented in the paper can be extended to different requirements per user,
cf. [12].

2 Although our results are given for i.i.d. channels, we remark that they hold
in the more general case where h[m] forms an ergodic Markov chain.



These two quantities, k(t),b(t), constitute the scheduling
variables at each slot. Formally:

Definition 1 (Scheduling Policy). A scheduling policy m is
a (possibly randomized) rule to choose a pair (k(t),b(t)) at
each slot t, where k(t) € {1,..., K} and b(t) € B.

In more detail, denote with H (t) the history of the system,
which includes the channel SNRs, the transmission decision,
and the transmission outcome of all slots up to t. A pol-
icy m specifies a history-dependent probability distribution
u™(t) = u"(H(t),t) where uf ;(H(t),t) is the probability
of scheduling user k at rate b at slot t given the past history
of the system.

We can now formalize the problem of achieving reliable
latency performance. Let s7 [m] be a binary variable that takes
value 1 if in frame m user k successfully received the intended
L bits before the latency deadline, and O otherwise. Clearly
sf[m] is a random variable, so let us discuss how the success
event s7[m] = 1 is determined within a specific frame. Given
a policy m, we introduce zf(t) to be the number of bits
remaining to be transmitted for the message of user k at the
beginning of slot t, and hence z] (mT ™) is the number of
remaining bits at the end of frame m. Therefore, we have

- 1 ifzp(mT™)=0

sklm] = { 0 if z%Emng > 0.
Definition 2 (Reliable Latency). The reliable latency of user
k under policy m is defined as:

Yoo E{sElm]}
% .

A reliable latency g = 0.99 guarantees that in 99 frames
out of 100, user k receives the L bits with latency at most 7.
Reliable latency could be alternatively called (a) the empirical
frequency of frame successes, or (b) timely throughput from
the sequence of works in [10], [11].
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C. Feasible Region of Reliable Latencies

Given an arbitrary system with unreliable individual trans-
missions, it is expected that not all possible reliable latency
requirements are achievable. Let us formally define the feasible
region of reliable latencies and the URLLC SLAs introduced
in Sec L.

Definition 3 (Feasible Region of Reliable Latencies). Con-
sider the set of all scheduling policies 11, and denote q" the
reliable latency vector achieved by policy m € 11. Then, the
feasible region of reliable latencies, denoted with Q, is the set
of vectors

Q=Uren{g e [0, 1% [¢<7"}.
Definition 4 (URLLC SLA). The URLLC SLA for K users is
a K-dimensional vector of probabilities ¢* € [0,1]¥.
o If @* € Q then we say that the URLLC SLA is feasible.
o If for a policy m € 11 we have q" > q* element-wise,
then we say that policy T achieves the URLLC SLA.

A policy is called “optimal” if it achieves the URLLC SLA
whenever the latter is feasible.

D. USS problem

The goal of this paper is to solve the USS, i.e., to find
the optimal scheduling policy that achieves the URLLC SLA
whenever that is feasible.

The following sections implement the following plan:

1) We establish a Markovian property which allows the
decomposition of the problem into a dynamic weight
adaptation over frames, and an intra-frame finite hori-
zon MDP without loss of optimality. Then we provide
a dynamic programming-based solution of the MDP,
which combined with the weight adaptation provides an
optimal policy for USS.

2) Due to the curse of dimensionality, the optimal policy
is costly to compute in large instances of the problem.
Indeed, we will prove that the per-frame problem is
NP—hard. Motivated by the problem complexity, we
propose low-complexity suboptimal policies, and we
prove that they become optimal in an asymptotic regime.

III. USS AS A MARKOV DECISION PROCESS

Recall that ™ (¢) expresses the remaining bits at slot ¢. Due
to the inherent randomness of the channel, the system state
z™(t) evolves within the m—th frame as a controlled Markov
Chain, described next. At each frame, the state is initialized
as (mT) = L1, and hence all users have L bits to transmit.
Denote with u™(t) the decision of a policy 7 in slot ¢: for
example if uf ;(t) = 1, then the policy decided in slot ¢ is
to activate user k by transmitting b° bits. The transitions of
the Markov Chain z™(¢) for t € {(m — 1)T,(m — 1)T +
1,...,mT — 2} are as follows:

(@) —b) ", wp. uf, (1)1 — o)
zi (1), w.p. Zl“ ug ; (t)De

i (t+1) :{

where pe = pe(vi(m), b"). Recall that 8™ [m] takes value 1 for
users with success frame m and 0 otherwise, as given by (2).
The SLA satisfaction problem amounts therefore to finding a
control policy 7 such that

The above belongs to the general class of constrained
Markov Decision Processes (MDPs), which are usually very
complicated problems to solve.

A. Markovian Characterization of Q

The MDP optimization space is the set II that contains
policies that act on all the past information of the system. It
is, however, possible to show that Markovian policies, acting
only on the current system state, suffice to achieve all reliable
latencies.

Definition 5. A policy 7 is "Markovian” if the following holds
u™ (H(mT +t),mT +t) = u™ (x(t), h[m)], 1),



for all (i) § € {0,1,.,,,T — 1}, (i) m > 0, and (iii) any
H(mT + t). We denote with TIMT the set of Markovian
policies.

Then let ¢p, denote the probability distribution over channel
states, and p, (h) denote the probability of using (Markovian)
policy 7’ at a frame where the channel state is h. We can show
the following result.

Theorem 1 (Markovian characterization of reliable latencies).
A reliable latency demand q* is feasible if and only if for
each channel state h there exists a set of Markovian policies
(k) C TIMP with cardinality at most K +1, and a probability
distribution p/(h) over I1(h) such that

¢ => on
h

To provide some intuition into the above, note that since the
channel is fixed within frames, and ergodic across them, we
can consider each channel state separately and then average
over the channel states. For a given channel state, we can study
the feasibility of the probability Pr{s} = 1} > gj. Also, by
Caratheodory’s theorem, we can describe every point in the
region Q by as a linear combination of at most K + 1 points.
Hence, the idea is to use Markovian policies that achieve these
K +1 extreme points and then satisfy the SLA by time sharing
between them. This result is along the lines of conventional
scheduling problems [17], [18], but extended to the case where
we have a function that specifies what action should be taken
according to the queue state and closeness to the deadline
instead of a single action.

Theorem 1 may characterize Q not only in an implicit
manner, but can also give us an important tool: It implies
that in order to achieve any given feasible SLA, it suffices
to restrict to policies that observe the channel state at the
beginning of each frame and select at random a Markovian
policy to follow for the current frame. In the next section we
capitalize on this insight to decompose USS to simpler prob-
lems without loss of optimality. The idea is that we use weights
to keep track of how much the SLA constraint has been
satisfied and we find the policy that maximizes the weighted
sum deliver rate periodically per frame. This procedure, as
the system evolves, essentially finds the correct time sharing
over Markovian policies that achieve the appropriate extreme
points. We formalize these next.

> o (R)T (). (3)

7/ €T1(h)

B. Periodic Decomposition

We define the process wy[m|, which is updated at the end
of each frame as

wi[m + 1] = [wg[m] — sim] + Ax[m]]", )

where Ai[m] is a Bernoulli random variable with parameter
g5, 1.e., the requested reliability of user k. Note that wy[m)]
evolves over frames as a queue with arrival rate ¢; and service
rate gy, and therefore its stability is equivalent to satisfying
g; < Gi. Indeed, in our scheme wy[m] acts as a counter
that tracks how well the user-k SLA constraint is satisfied

in the past frames. A large value indicates that the user is
lagging behind in satisfying its target empirical probability,
and therefore our scheme will prioritize this user within the
next frames. Specifically, within frame m we use w[m] as
weights to solve the following intra-frame control problem:

mgx]E {Z wk[m]sg[m]} . %)
k=1

Theorem 2 (Optimal Decomposition). The policy that, at
each frame, solves the finite horizon MDP (5) and adjusts
the weights as per (4) satisfies any feasible SLA requirement

q* € Q.

Proof: The proof is based on the behavior of the process
w[m], specifically on the fact that under the above policy (let
us denote it by 7*) this process is mean rate stable. Let us take
any ¢* € Q and define 7 the policy that achieves this reliable
latency demand by randomizing over Markovian policies, as
per Theorem 1. In addition, consider the quadratic Lyapunov
function L(z) =, z7. We have

E{ L™ [m+1]) - L™ [m])hlm],w™ [m] =w |

<C-2 (E {Zwks}g* [m]|h} -E {Zkak[m]}> .
k=1 k=1

In the above, C' = K + (>, q,’;)2 is a constant. Observe that
policy 7* maximizes the first expectation for each channel
state. Taking expectations over the channel states and compar-
ing with policy 7 thus gives

E{ L™ [m+1)) - L™ [m) ™ [m] =w}

K K
<C-2 (Z wipE {sf[m]} — Zwqu> =C.
k=1 k=1
Taking expectations over w™ [m] we have
E{L(w™ [m])} < mC +E{L@w™ [0))},

and since wi[m] < />, wi[m] it follows that

E{wf [M]}  C | E{Lw" [0])}
/;\4 S\/MJF 7 .

Finally, note that

(6)

M-1

o M= S Agl] — Y

st [ml,

m=0

which, combined with (6) gives

Yoo E{sE [ml} s E{Alml]}

M - M )
C__E{L@" [0)}
VM Mo




As M grows, the last term can be tuned to tend to zero (e.g.
choose the counter to be zero at the beginning of system
operation). Hence taking limits to infinity we obtain:

=
tpint - - E{sy [ml} > i,
proving the theorem. ]

C. Optimal URLLC Algorithm

In this subsection, we focus on one frame and provide a
dynamic programming algorithm that solves (5) optimally.
Combining this algorithm with the weight update mechanism
(4) we have an optimal policy for USS.

Initially, we drop the frame indices and take t € {1,...,T'}.
We define F'(z,t) as the value function of the problem, i.e.
the optimal value of (5) if we start at slot ¢ with z(t) = .
We also denote with U(z) the set of feasible decisions when
the remaining bits of user k are xj, we have

Ux) = {(k,b):be {0} UB,b=0if z), =0},

which essentially says that we exclude transmissions to users
whose packet has already been delivered.’> Then although in
problem (5) the reward is collected at the end, using the
constrained decision set U(z) we may collect reward wy, at
the slot when the whole packet for user k is successfully
transmitted. Then, the value function of the problem should
satisfy the following recursive relations [19]:

( ’ ) (k}))eu(z) [U/k( b (’Yk )) fow® b<0}:| @
F x,t)= max F X t+ 1 e ,b 8
( ’ ) (k,b)euU (x) [ ( , )p (WC ) ®

+ (Wil e, ty-b<oy + F(x —ex, t +1))(1 - pe(%,b))}

The optimal algorithm works as follows. At the beginning
of each frame, we read the current weights and channel
qualities and then determine the function F'(z,t) by solving
the recursion (7)-(8), e.g. using policy or value iteration
methods [19]. The optimal decisions within the frame are then
given by the minimizer of the right hand side of (8), with ties
broken arbitrarily; formally uy, ;(x, h,t) = 1 if the pair (k, b*)
is the minimizer in (8) and zero otherwise.

IV. COMPLEXITY OF THE INTRA-FRAME PROBLEM

The dynamic programming-based algorithm explained in the
previous section solves optimally the finite horizon MDP (5).
The algorithm can be used for small instances (e.g. few users,
few possible modulation and coding schemes and short frame
duration); however, as the instance size grows, it becomes
impractical due to the so-called curse of dimensionality, i.e.,
the number of possible system states £ grows exponentially
large with the problem size (i.e. K, T and |B|).

A natural question then arises: are there low-complexity
optimal policies? Prior works on timely throughput [11], [10],

3We use this convention throughout the paper.

[13] solve problems similar to USS using low-complexity strict
priority policies. These works can be seen as special cases
of our problem where: (i) only one successful transmission
is needed for the whole packet to go through (i.e. the only
transmission rate available is L/n) or (ii) the blocklength n is
high enough so transmissions at any rate below the Shannon
capacity of the each user has negligible transmission error.
Therefore, since the USS problem is more general, it remains
unclear whether it is a complex problem to solve or not.

First we provide an illustrative example of the suboptimality
of strict priority policies in our problem.

Example 1. Consider 3-slot frames, two users and a single
transmission rate B = {L/2}, such that each packet requires
two successful transmissions. Let the success probabilities be
(p1,p2) = (1,1/2) and the rewards (wy,w3) = (1,3). In
this specific example it is better to first “gamble” with the
high reward user and then if the first transmission fails switch
to the user with the reliable channel. Here, as the deadline
approaches the policy becomes more conservative.

It follows that generalizing [11], [13], to include multiple
successful transmissions renders strict priority policies sub-
optimal. Therefore we cannot use [11], [13] to conclude the
complexity of our problem.

The main result of this Section is the complexity of the
intra-frame problem (5):

Proposition 3. Problem (5) is N'P-hard.

Proof: We will prove N'P-hardness by reducing the intra-
frame scheduling problem to a knapsack problem. Indeed,
a special case of the intra-frame problem is the one where
the blocklength for each transmission is asymptotically large,
ie. n — oo. In that case, the probabilities of error take the
following form

1,b > nlogy(1+7)
Pe(7,0) =
07b S nlOgQ(l +,Y)

and the best rate for user %k takes the form b; =
max {b € B|b < nlogy(1 + v;)}. Since there is no probability
of error, user k then needs s, = [L/b*k] transmissions (i.e.
needs to use sy slots) to send its packet.

Since SNRs can be arbitrary, this is a general instance of
a knapsack problem, where the knapsack has capacity 7' and
the packet for user k is considered item k with reward wy, and
size Sp. ]

With the above result we showed that our systematic way
to solve the USS through a problem decomposition turned
out to lead to an NP-hard problem. The hardness result of
Proposition 3 relates to the decomposition approach, and does
not characterize the complexity of the USS problem, hence
to this point, it remains unclear whether the USS problem is
indeed a complex problem.

It is then important to note that we believe that the USS is
much harder than the deterministic knapsack problem, which
was used to prove hardness of the intra-frame problem of



our decomposition. First, it might not even be in NP: it is
not straightforward to test a given optimal solution without
checking the policy over all possible system evolutions, which
grow exponentially. In addition, our setting is conceptually
a more general version of the stochastic knapsack problem,
where the size of an item is random and revealed only
after the item is put in the knapsack [20]. The best known
approximation ratio for this problem is 1/2 — €, however
the corresponding algorithms are exponential in (polynomials
of) 1/e [21], [22]. Whether better approximations exist or
whether fully polynomial time approximation algorithms exist
for approximation ratio better than 1/4 [20] remain open
questions.

On the other hand, when the deadline 7' grows we can
exploit the fact that the effect of the random variables describ-
ing the success probabilities will tend to concentrate around
their mean values in order to obtain efficient approximation
algorithms for such asymptotic regimes. Indeed, based on this
approach, we show in the next Section that the USS has a
Fully Polynomial Time Approximation Scheme (FPTAS) at
the asymptotic regime where the deadline 7T scales with the
number of bits L per packet.

V. ASYMPTOTICALLY OPTIMAL POLICIES

We begin by noting that our intra-frame scheduling problem
bears a striking similarity into the knapsack problem: we must
“pack” items of different weights (the number of transmissions
to a user) in a knapsack of 7' slots, such that the total value
(the sum of wy of successful users) is maximized. However,
there are certain complications: (i) the value of an item is
obtained only if all reliable bits are successfully transmitted,
hence the value of each item is random, (ii) the weight
of each item increases with transmission failures and hence
it is also random. As mentioned in the previous Section,
such stochastic knapsack problems have been studied in the
literature, but without success in obtaining efficient, close to
optimal approximation algorithms. Therefore, our strategy in
this Section is as follows. We propose a class of knapsack-
inspired policies, which are essentially simple policies that
solve a random knapsack problem where the weights of each
item are concentrated to their mean values, and then we prove
that these policies attain asymptotic near-optimality in our
problem for the regime where 7' and the number of reliable
bits are both large. First, we formalize the notion of a near-
optimal policy:

Definition 6 (e—optimal policies). A policy ™ will be called
e-optimal for the USS problem if it achieves any SLA demand
vector ¢ € (1 —¢€)Q.

We then note that the most efficient way of transmitting
information to user k is to select the number of transmitting
bits b that maximizes the average rate of successful bits/slot,
which is given by b times the probability of success. Denoting

this choice with b; for user k.* we have

bz = argmax [b(l - pe(b7 'Yk:))] ’
beB

Then we define the following class of policies:

Definition 7 (Knapsack-inspired class of policies). A policy
m is said to be knapsack-inspired if
o Transmission to user k is attempted at rate by,
o User selection is given by the solution of a (deterministic)
knapsack problem where user k brings reward wy, has
size L/b; and the knapsack has total capacity of T.

The complexity of the knapsack-inspired policies is dom-
inated by the user selection phase, for which there exists a
Fully Polynomial Time Approximation Scheme within 1 — €
of optimality, for any € > 0, see for example [23, Chapter 8].

The main result of this Section is that any knapsack-inspired
policy has close to optimal performance in a scaling system
where the deadline 7" and the reliable bits L grow large.

Theorem 4 (Asymptotic optimality of the knapsack-inspired
class). Consider an instance of our problem where each frame
lasts for vT slots, and each user has to transmit vL reliable
bits. Then any knapsack-inspired policy is asymptotically e—
optimal as v — oo.

Before showing the proof of the theorem, we present a
lemma regarding e—optimal scheduling.
Ws,h[m]}

T, h[m]}

for all possible values of the channel states h[m] and w[m] €
R%. Then this policy is e—optimal.

Lemma 5. Let 7€ be a policy such that

E {Z wy [m]sg[m]

> (1—e)maxE {Zwk[m]sdm]

k=1

The proof is similar to that of the results on approximate
scheduling in stochastic optimization problems not involving
deadline constraints, cf. [18, Chapter 6.2]. We now turn to the
proof of the Theorem.

Proof of Theorem 4: Recall that (i) denotes the vector
of remaining reliable bits at slot s € {0,1,...,T}. Under any
policy, the scaled system is described by the vector:

2(t) = (i), t € 0,7), ©

such that for any scaling parameter v > 0 we have z¥(0) = L.
The evolution of the scaled system can be written concisely
as

Lvt]
o(t) = L1 — % S R(r — DA (r - D)o(r — 1), (10)
T7=1

4Since we focus on the intra-frame problem, hereinafter we drop the frame
index from the notation.



where 3
(i) v(t) is here a K'|B|-dimensional vector with zeros, except
one element which has value 1. The vector indicates the
choice of the policy in the slot where time instance ¢
belongs, regarding which user to serve and how many
bits to transmit.
(i) R(t) is a K x K|B| matrix with elements given by

Ber (1 — pe(b™™(+%) )
if (k—1)|B|+1<i<k|B|

0, otherwise

Ry (1) =

where rem(i, k) is the remainder of the division i/k and
Ber(p) denotes a Bernoulli random variable with success
probability p.

(i) A(z¥(r—1)) is a K|B| x K|B| matrix with off-diagonal
elements equal to zero and diagonal elements given as

A;;i(z"(t)) = min [biﬂ , x%(t)]

The role of this matrix is to restrict the number of in-
formation bits delivered by a transmission to the number
of bits still in the queue (hence keeping the system state
nonnegative)

We may rewrite eq. (10) as

vt
() = [1 — R% S A (7 — D)olr — 1) + (1), (1)
T=1

where R £ E{R(T)};nd
et
p(t) ==Y (R—R(r—1)) A" (r— D)o(r —1). (12)
T=1

We have that |[p”(t) — p”(t —1)|| < K max;eq,. 53[0,
almost surely Vv > 0. In addition, since R and R(7) are i.i.d
and independent of v(7), the process p”(t) is a Martingale
for any v. From [24, Th. 10.2.4] we have for any T'

lim sup ||p”(¥)]| =0, as..

V—r 00 0<t<T
This implies that the scaled controlled stochastic process " (t)
converges to Z(t) almost surely and uniformly on compact sets
(see [24, Propositions 10.3.2, 10.3.3]), where Z(¢) is defined
as:

t
z(t)=1L —R/ A(Z(s))v(s)ds, te[0,T]. (13)
0
Considering hereinafter the deterministic fluid system (13),
our problem becomes to maximize

K

J(&(T)) = Zwk]l{ik(T):O}- (14)
k=1

As v — o0, a policy that solves the above problem also solves

our original stochastic problem. However, problem (14) is

now simplified; since everything is deterministic, the evolution

3In the following, the dimension K|B| is interpreted as follows: The first
|B| elements/columns/rows correspond to the rate selections schemes for user
1, the next for user 2 etc.

depends only on the control and not the queue state. We can
thus obtain the optimal solution by planning the transmissions
beforehand. Let us denote 7; j, the amount of time where user
k was scheduled with rate b. Then, (14) is equivalent to the
following optimization problem:

K

max Zwkﬂ{zﬁ‘lT,i,kbi(l—pe<w;c,bi)>zL}
k=1

S.t. Zﬁ‘,k =T.
i,k

Notice that the most efficient allocation for user k is the one
which assigns time only to the modulation scheme b} that
maximizes b(1 — p.(vk,b)). The problem then is equivalent
to a knapsack problem where the knapsack capacity is 7', the
items are the user reliable bits, and item k (user k) yields
reward wy, and takes space of s; = [L/bj |. Then our problem
can be solved within accuracy € by the poly-time algorithm
mentioned in [23, Chapter 8]. Coupled with Lemma 5, this
implies that we can achieve (1 — ¢) fraction of the Feasible
Region of Reliable Latencies in the asymptotic regime. [ ]

In practice, as the deadline is approaching, transmissions
of b; bits may not be enough to transmit a packet by the
deadline, even if they are all successful. The policies we are
using modify the knapsack-inspired policies as follows: at slot
t, the rate min [by, minyeg{b: (T' — t)b > x4 (¢)}] is chosen
for transmission. These modified knapsack-inspired policies
are without loss of optimality in the asymptotic regime, and
perform better in the non asymptotic cases.

VI. NUMERICAL RESULTS

In this section we report numerical results that illustrate the
performance of the policy proposed in the previous section. We
simulate a Rayleigh fading wireless system where the average
SNR is equal to 4 dB and each codeword spans 168 symbols.
Each user has to transmit 32 bytes of information in each
frame and the number of information bits per codeword is
constrained to the set {64, 96, 128,160, 192}.

Figure 2 shows the reliable latency region achieved by
different policies for two users. There are 4 slots per frame and
10° frames have been simulated for each point. The proposed
policy can be seen to perform very close to the optimal one
despite its much lower computational complexity.

Figure 3 plots the average reliability as a function of the
number of users served. Each frame consists of 14 slots and
10* frames have been simulated per point. We can see to which
extent the proposed policy outperforms round robin, and how
much this gap increases with the number of users.

VII. CONCLUSIONS

We have studied the URLLC SLA satisfaction problem and
we design a scheduling policy to activate users and uncertain
short-packet transmissions with the goal to establish reliable
latency performance A dynamic programming optimal policy
is described, which can be used to solve small instances.
The proposed policy leads to periodically solving an NP-
hard problem, however whether the original problem of SLA
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satisfaction is N P-hard remains open. Nevertheless, For
specific large problem instances, we show that low com-
plexity knapsack-inspired heuristics become asymptotically
near-optimal in a fluid regime. Our work sheds light to the
USS problem, and hence it is an important first step towards
designing more sophisticated URLLC schemes with multiple
different SLAs. In such settings, the region of reliable latencies
Q varies over time following the changes in the environment,
and the system can possibly negotiate the SLA level with each

user.
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