
Dynamic Cache Rental and Content Caching in
Elastic Wireless CDNs

Jeongho Kwak†, Georgios Paschos‡ and George Iosifidis†
†School of Computer Science & Statistics, Trinity College Dublin, Ireland

‡France Research Center, Huawei Technologies, France

E-mail: jeongho.kwak@tcd.ie, georgios.paschos@huawei.com, george.iosifidis@tcd.ie

Abstract—With elastic CDNs, content providers can rent cache
space on demand at different cloud locations in order to enhance
their offered quality of service (QoS). This paper addresses a key
challenge in this context, namely how to invest an available budget
in cache space in order to match spatio-temporal fluctuations of
file demand and storage price. Specifically, we consider jointly
dynamic cache rental, file placement, and request-cache association
in a wireless scenario in order to provide a just-in-time CDN
service. The objective is to maximize the benefit in average down-
load delay obtained by the rented caches, while ensuring that the
time-average rental cost is less than a fixed budget. We leverage a
Lyapunov drift-minus-benefit technique to transform our infinite
horizon problem into day-by-day subproblems which can be
solved without knowledge of distant future file popularity and
transmission rates. For the case of non-overlapping small cells
(also wired case) we provide an efficient subproblem solution,
referred to as JCC. However, in the general overlapping case,
the subproblem becomes a mixed integer non-linear program
(MINLP). In this case, we employ a dual decomposition method
to derive a scalable solution, namely the JCCA algorithm. Finally,
via extensive simulations, we reveal that the proposed JCCA
algorithm attains 82.66% higher delay benefit than existing static
cache storage-based algorithms when available average cache
budget is 20% of entire file library; moreover, the benefit becomes
higher as the average cache budget gets tighter.

I. INTRODUCTION

Background and Motivation. The growing traffic in wireless
networks has popularized the use of content delivery networks
(CDNs) for improving quality of service and reducing traffic
costs. A large portion of the Internet traffic today is handled
by CDNs owned by large content companies like Google
and Netflix. Such deployments require a significant—often
prohibitive for newcomers—investment for the cache servers
and the associated control systems. For a smaller size Content
Provider (CP) an alternative is to purchase service from a CDN
provider such as Akamai. However, this can be very costly
and impractical for some CPs since the leases are on long-
term basis, prices are fixed and catalogue-dependent, and the
content placement decisions are made by the CDN provider.

A disruptive solution has recently emerged known as content
delivery as-a-service or elastic CDN (eCDN) [1]. The eCDNs
rely on commonly available cloud computing infrastructures
and exploit the network function virtualization (NFV) tech-
nology to instantiate virtual caches [2]. Solutions like Akamai
Aura [3] and Huawei uCDN [4] allow dynamic cache scaling,
e.g. to support a sudden traffic surge. The eCDNs therefore en-
able a novel business model, where small CPs can dynamically
rent storage and instantiate virtual CDNs to meet customer
demand just-in-time and space, i.e., whenever and wherever
caching is needed. This model arrives with a flexible pricing

scheme: the first market solutions already offer a fine-grained
pay-as-you-go service [5]. Clearly, eCDNs can benefit CPs
with tight monetary budgets, volatile demand and/or seeking
fine-grained caching control over their storage management
and caching decisions.

At the same time, this model raises technical and economic
questions. In particular, the CP must decide (i) how much
storage to lease at each location in order to meet user demand
and (ii) which content items (files) to cache at each of these
storage reservoirs. Furthermore, these decisions need to be
updated regularly, often on per-day or per-hour basis, in
order to accommodate the time-varying nature of the content
demand. At each round, the CP encounters an investment
dilemma: a larger cache lease will improve service quality
but will also increase expenditure. With a given operational
expenditure budget, the investment decisions are inherently
coupled across different rounds. Overspending in one round
improves the current performance but restraints subsequent
decisions and limits future opportunities.

Our goal in this work is to model and optimize the storage

management and caching decisions that a content provider

needs to make when leasing storage from an eCDN system.
Scenario and Contributions. We study the more challenging
but increasingly relevant scenario where the eCDN is owned
by a mobile network operator, and the storage resources
are at small cell base stations (SBSs).1 These wireless edge

caching architectures were addressed in several papers, e.g.,
[7]–[9] and they are expected to play a key role in 5G+
networks where low-latency or data-demanding services can
be supported by caching-at-the-edge.

In our eCDN mobile network, a geographical area is covered
by several SBSs with possibly overlapping coverage. The
SBSs have caches which can be dynamically rented by the
CP. When a file is served from a leased cache, there is a delay
benefit as opposed to be served from a remote CP server,
which is attributed to the proximity of the cache. Therefore,
the CP can invest in cache space in different time slots and
locations, decides which files to place in the rented space,
and then enjoys a service delay benefit for the requests that
were served from the caches. In this paper, our business
model is that the CP gives an average cache rental budget
to the mobile operator where all operations including cache
scaling, content caching and wireless routing decisions are
entrusted to the mobile operators. It would be beneficial to
both of the CP and the mobile operator by jointly manipulating

1For example, AT&T have envisioned using their own CDN, namely Telco
CDN which integrates content delivery with traffic engineering [6].

cache scaling, content caching and wireless routing since
it enables to reduce backhaul congestions and enhance the
quality of service for end users. Then, the objective is to
select investment, placement, and request association in order

to maximize the service delay benefit for a given time-average

budget. Our contributions can be summarized as follows.

1) We formulate an important optimization problem for
elastic wireless CDNs, which involves storage leasing,
file caching and routing decisions. Our generic analysis
applies to both wired and wireless systems, and provides a
way to match fluctuating demand with cache size scaling.

2) We show that the overall proposed scheme is shown
to converge to the maximum achievable service quality,
subject to the provided budget. Moreover, the proposed
scheme has the advantage that it does not require knowl-
edge of distant future file popularity and average delay.

3) We show that the subproblem admits a simple solution
in the non-overlapping SBS case (applies also to wired
scenarios), while it becomes a mixed integer non-linear
program (MINLP) in the overlapping case. For the latter,
we propose a Lagrangian decomposition method which
provides the optimal solution of its linear relaxation.

4) Simulations demonstrate the effectiveness of our ap-
proach, which attain 82.66% higher average delay benefit
than existing static cache-based algorithms when average
available cache budget is 20% of entire file library.

The remaining of this paper is organized as follows. We
first describe the related work in Section II. Next, we present
the system model in Section III. Then, we state the joint
cache rental, file caching and region association problems
and propose JCC and JCCA algorithms in Section IV. In
Section VI, we evaluate the proposed algorithms by extensive
simulations. Finally, we conclude this paper in Section VII.

II. RELATED WORK

Cache dimensioning in traditional CDNs. Related to our
work are the extensive studies on CDN server placement [10]–
[13]. For example, Bektas et al. [10] formulated the joint
problem of server opening, file placement, and transfer cost
minimization, and solved it using Bender’s decomposition,
while Li et al. [12] used dynamic programming. Differently
from server placement problems, Laoutaris et al. [13] formu-
lated a storage budget allocation problem in a hierarchical file
distributed system, and proposed heuristic solutions. Contrary
to the above, and other static approaches in the context of
traditional CDN, our problem is of dynamic nature, requiring
to consider these decisions jointly across multiple time epochs.

Wireless caching in heterogeneous cellular networks. Since
the seminal work on femtocaching [7], several techniques,
e.g., [14], [15] have emerged for deciding the file placement
when access to multiple caches is possible in wireless net-
work environments. We mention the extension of [16] which
studies caching policies under spatio-temporal variation of file
popularity. Our work generalizes femtocaching to considering
cache size scaling over multiple time slots.
Cache management in cloud CDNs. There is a number

of recent works studying the scenario of deploying caches as
virtual functions on clouds [17], [18], [20]. For example, Presti
et al. [17] proposed a heuristic server placement algorithm

based on traffic dynamics, while Llorca et al. [18] proposed
a distributed solution for dynamic in-network caching. To the
best of our knowledge, none of these works jointly optimizes
cache rental, file placement, and area-SBS association in
cloud/elastic CDNs without knowledge of full environmental
information.

III. SYSTEM MODEL

Our system consists of a macro base station (MBS) s and
several small base stations (SBSs) J , which together provide
coverage to a geographical area as shown in Fig. 1. SBS j ∈
J offers storage for lease to be used for file caching and
reduce file download delay for requests emanating from the
geographical area. We discretize the geographical area into I
non-overlapping smaller areas indexed by i and denote with
Ji all the reachable small cells from location i. The macro
cell is considered always reachable.

The time evolves in days k = 0, 1, . . . , and each day is
further divided in T = 24 hour slots. We consider a set of
files F , and denote with λk

i,f (t), t = kT, . . . , (k + 1)T − 1
the traffic demand for file f emanating from location i in
slot t (belonging to day k). The traffic demand reflects the
file popularity in time and space, and therefore it will be
crucial to adjust caching decisions over time. It is reasonable
to assume that the daily demand profile λk can be predicted
accurately only near its actual occurence [21], and this is a
one-day realization of a random variable λ; hence we assume
that this information is revealed to the decision maker at the
beginning of the day and it is otherwise random and i.i.d. over
days with mean E[λk]. We emphasize here that the decision
maker does not know a priori the value of the mean E[λk].

When a user requests a file, there is an associated download
delay dkij , j ∈ Ji∪{s}, which is location-specific and depends

on whether the file is cached or not.2 The delay benefit of re-
trieving the file from the cache of SBS j is therefore expressed
as dkis− dkij , and often this benefit can be significant since dkis
involves contacting a remote server. SBS j ∈ J leases storage
at a fluctuating price hk

j . The price variations are justified
by a spot market where the cache owner sells its left-over
storage, which depends how traffic and storage demand change
from day to day. From the point of view of a small content
provider, it is natural to think of an available average budget

Bavg (dollars per day) to be spent on cache leasing. That
is, there is day-to-day elasticity on the amount of money the
provider can use, but certain operational expenditure (OpEx)
constraints must be met. With these economical aspects in
mind, we are willing to address the content provider question
of what is the best cache leasing strategy to optimize average

delay performance. Note that this question is very challenging
for the following reasons: (i) the content provider does not
know the actual traffic in future days, and since larger traffic
will yield more return of cache investment, deciding how much
budget to invest in each day is complicated, (ii) the delay
benefit of caching at a SBS changes over time, and therefore
the distribution of daily budget to different caches must be
carefully designed.

2Note that if SBS j does not cache requested file, the file is retrieved
from the remote server via backhaul links and the MBS s.

MBS

SBS

+ leased cache

SBS

+ leased cache

SBS

+ leased cache

Example association: users in this area for file 1 are associated with SBS 1 with prob. and associated with SBS 2 with prob.

If the requested file is not cached in any SBSs, the file is retrieved from the original content server via backhaul links and MBS

Original content server

(full library for all contents)

Every hour, the original content

server updates contents to be cached

in each SBS via backhaul link

0 T 2T

day

hour

Decision: Decision: Decision:

Decision: Decision:

Area demand ,

cache leasing price per unit bit,

Average budget constraint for leasing cache space

modeled as virtual queue of which update is

Fig. 1: Overview of cache rental, file caching and region association in wireless elastic CDNs.

A. Feasible Cache Plan

We describe the decisions involved in deploying a caching
plan within a day. We introduce the investment variables ykj to
denote the amount of SBS storage that is leased for caching
operations in day k. We may express the day-average budget
constraint as follows:

lim
K→∞

1

K

K−1
∑

k=0

∑

j∈J

ykj h
k
j ≤ Bavg. (1)

To express the delay benefit within a day, we introduce
two more sets of decision variables: (i) file placement variable
zkj,f (t) ∈ {0, 1} takes value 1 iff file f is cached at SBS j

in slot t, and (ii) demand association variable xk
ij,f (t) ∈ [0, 1]

denotes the fraction of location i traffic demand for file f
that is served by small cell j, again in slot t. We can now
express the daily delay benefit obtained by cache investments
in location j as

∆k
ij(x

k, zk;λk) = (dkis−dkij)
∑

f∈F

(k+1)T−1
∑

t=kT

xk
ij,f (t)z

k
j,f (t)λ

k
i,f (t),

where observe that the benefit depends on the pure delay
advantage that the location offers (dkis−dkij), on the fraction

of traffic served at this location xk
ij,f (t), on whether the file

is actually cached here zkj,f (t), and finally on the volume of

demand λk
i,f (t). The total delay benefit in day k is:

gk(x
k, zk;λk)=

∑

i∈I

∑

j∈Ji

∆k
ij(x

k, zk;λk). (2)

There is a number of constraints that must be satisfied within
each day. Specifically, the entire demand of location i is served
from some of the SBSs, hence it holds:

∑

j∈Ji

xk
ij,f (t) = 1, ∀i, k, t. (3)

Also, the total file placement should not exceed the leased

cache:
∑

f∈F

zkj,f (t) ≤ ykj /b, ∀ j, k, t, (4)

where b is the size of each file; we assume that b is the same
for all files for simplicity, but we can model a heterogeneous
file size scenario by dividing different size of files into same
size chunks.

Definition 1 (Feasible cache plan). A feasible cache plan for

day k is a selection of variables (ykj , z
k
j,f(t), x

k
ij,f (t)) such

that ykj ≥ 0, zkj,f(t) ∈ {0, 1}, xk
ij,f (t) ∈ [0, 1] and further (3)

and (4) are satisfied.

B. Problem Formulation

To tackle the average budget constraint (1) we introduce a
virtual queue whose backlog is updated by

Q(k + 1) =
[

Q(k) +
∑

j∈J

ykj h
k
j −Bavg

]+

. (5)

Prior work [22] shows that if the stability condition

lim
K→∞

1

K

K
∑

k=0

Q(k) <∞ (6)

is satisfied, then so is constraint (1). Intuitively, the backlog
Q(k) counts the excess budget spent in the previous days,
which is valuable information for keeping track with the
average expenditure. Hence, we formally define the state of
the system at the beginning of day k as the tuple (Q(k),λk).

Definition 2 (Elastic CDN policy). An admissible elastic CDN

policy π is a (possibly randomized) mapping from the state

(Q(k),λk) to a feasible cache plan. We denote with Π all the

admissible policies.

Then, our problem (P) is to find an elastic CDN policy
that maximizes the average delay benefit, and can be formally

TABLE I: Summary of the notations
Notation Definition

i ∈ I area index

j ∈ J small cell index

f ∈ F file index

k day index

T hours of a day, i.e., 24

t index for passed hours from the beginning of the first day

λk
i,f (t) demand profile for i, f, k and t

hk
j price to lease cache storage per unit bit for j and k

dk
ij average delay for serving area i by SBS j during k

dk
is average delay for serving area i by remote server during k

xk
ij,f (t) association probability for i, j, f, t and k

yk
j leased cache space at SBS j during k

zk
j,f (t) file caching indicator for f, j, k and t

Bavg average budget constraint

stated as follows:

Val(P) = sup
π∈Π

lim
K→∞

1

K

K−1
∑

k=0

gk, (7)

s.t. lim
K→∞

1

K

K−1
∑

k=0

∑

j∈J

ykj h
k
j ≤ Bavg.

To facilitate reading, we summarize notations in Table I.

IV. ELASTIC CACHE SCALING ALGORITHMS

A. Upper Bound on Delay Benefit

We characterize the maximum performance by providing an
upper bound on the achievable average delay benefit. Consider
the problem of using a feasible cache plan to maximize the
daily delay benefit given a budget ŷ:

F (ŷ;λk) , max
xk,zk

gk(x
k, zk;λk), (8)

s.t.
∑

f∈F

zkj,f (t)≤
ŷkj
b
, ∀j, t,

∑

j∈Ji

xk
ij,f (t)=1, ∀i, f, t,

Lemma 1 (Upper Bound). Let pλ be the probability with

which traffic profile λ occurs, and φ(y,λ) the probability that

a stationary policy will use budget y when the observed traffic

profile is λ. An upper bound on the maximum value of P is:

Val(P) ≤ Val(UBound)
.
= max

φ(y,λ)

∑

λ

pλφ(y,λ)F (y;λ),

s.t.
∑

y,λ

φ(y,λ) = 1,

0 ≤ φ(y,λ) ≤ 1, ∀(y,λ),
∑

λ

pλφ(y,λ) = Bavg.

To prove the lemma, it suffices to observe the sequence
of days where traffic profile λ occurs and show that any
stationary policy will in the limit choose some φ from our

feasible set above.3 We note that the above bound is attainable
by an oracle policy that knows the statistics E[λk]. Next we
provide a dynamic algorithm agnostic to E[λk] and we prove
its optimality by comparing its performance to the oracle.

B. Day-by-day Algorithm

In this section, we focus on the problem of choosing the
optimal investment (ykj) on a day-by-day basis. Focusing on
day k, the decision maker is aware of the traffic profile real-
ization (λk

i (t)), which in practice is typically obtained using
machine learning methods, cf. [21]. Additionally, information
about prices hk

j , delays dkis, d
k
ij , and file size b is available. But

most importantly, we assume that for any choice of investment
(ykj), the best daily delay benefit F (y;λk) is also known. The

goal is to produce a decision about the investment (ykj) at each
cache j. To this aim we employ a Lyapunov drift-minus-benefit

framework as follows.

To treat the budget constraint, we use the standard quadratic
Lyapunov function to define the Lyapunov drift function as
follows:

L(k) ,
1

2
Q(k)2, (9)

∆(L(k)) , E{L(k + 1)− L(k)|Q(k)}. (10)

Note that the Lyapunov drift depends on our day k decision
(ykj) implicitly via the update of Q(k + 1), and provides
information about the expected improvement of constraint
satisfaction when taking the specific decision. Since we are
also interested in maximizing the time average of gk using
feasible cache plans, we next introduce the Lyapunov drift-
minus-benefit function (DMB):

DMB(y;λk) = ∆(L(k))− V E{F (y;λk)|Q(k)}, (11)

where V is a constant parameter to balance the tradeoff
between two conflicting objectives, (i) improving the budget
constraint satisfaction, and (ii) greedily maximizing the daily
benefit. We will see that V can be tuned to also tradeoff
convergence with accuracy of the whole approach.

Applying the queue update equation (5) and lemma 4.3 from
[24], we obtain under any possible decision (ykj), ∀j ∈ J :

DMB(y;λk) ≤ P − V E{F (y;λk)|Q(k)}
− E

{(

Bavg −
∑

j∈J

ykj h
k
j

)

Q(k)|Q(k)
}

, (12)

where P = 1/2(B2
avg + |J |y2maxh

2
max) is a positive constant.

Prior work [25] shows that we can uncover optimal decisions
by minimizing the RHS of (12).

Define the day-by-day DMB (DBDD) policy as the one that
chooses yk = y∗ as follows:

y∗ ∈ argmaxyV F (y;λk)−
∑

j∈J

Q(k)ykj h
k
j , (13)

3Our result is given here for stationary policies whose decisions converge
in the limit. It is possible to include non-stationary policies by replacing limits
with lim inf , however such policies do not provide a better performance hence
we leave them out of our considerations. Also, we have assumed a finite set of
possible budget decisions and traffic demand profiles, which is an important
technical assumption; to alleviate it we can use approximations used in [23].

and additional a feasible cache plan x∗, z∗ in F (y∗;λk). We
have the following results:

Theorem 1 (Optimality tradeoffs). The DBDD stabilizes

Q(k), and hence satisfies (1), it achieves an average delay

benefit: Val(DBDD) ≥ Val(UBound) − O(1/V), and the

average queue length satisfies: QDBDD ≤ O(V).

Proof. Due to the limited space, the proof is presented in our
technical report [26].

Some remarks are in order:

• Our scheme always satisfies the budget constraint, as long
as λk has finite second moment.

• It achieves a near-optimal average delay benefit without
a priori knowledge of stationary popularity statistics, but
rather by looking at the daily learned popularity and
keeping a budget counter.

• If λk is stationary, we may tolerate a large value for
Q(k), and hence we can pick a large V . However, keeping
the queue length small has the benefit of making the
algorithm robust to time-varying traffic profile statistics.

The DBDD relies on a method to compute optimal cache plans
that maximize average daily delay benefit. Below we focus on
this aspect.

V. INTRA-DAY PROBLEM AND ALGORITHMS

In this section we turn our attention into solving the intra-
day problem of finding the average delay benefit F (y;λk)
given budget investment y.

A. Non-overlapping SBS Coverage

We study first the case where the small cells are non-
overlapping. This immediately simplifies the routing decisions
xk
ij,f (t), such that xk

ij,f (t) = 1, ∀t, f, k if location i is
connected to SBS j and 0 otherwise. In essence this removes
one of the constraints from the problem. We will see that this
makes our problem relatively easy to solve.

Plugging (8) into (13) and omitting (3), we see that an
optimal cache plan can be found by solving for fixed k:

max
yk
j ≥0

zk
j,f (t)∈{0,1}

V

(k+1)T−1
∑

t=kT

∑

j,f

Dk
j,f (t)z

k
j,f (t)−Q(k)

∑

j∈J

ykj h
k
j ,

(14)

s.t.
∑

f∈F

zkj,f(t) ≤
yj
b
, ∀t ∈ {kT, . . . , (k + 1)T − 1}, j.

where caching file f at location j in slot t brings the following
delay improvement:

Dk
j,f (t) ,

∑

i

(dkis−dkij)xk
ij,f (t)λ

k
i,f (t),

which is computable using known parameters d,x,λ. Al-
though (14) is an Mixed Integer Linear Program (MILP), due
to its simple form it can be solved by inspection. At each pair
of location-slot (j, t) we order files in decreasing values of
Dk

j,f (t). We remark that if we make the investment ykj the

best delay benefit will be harvested by caching the ykj /b files

that rank higher in this list. This provides directly the solutions
z as a function of y, it remains now to determine the latter.

With a slight abuse of notation, let us call σ the permutation
of file indices that implies Dk

j,σ(1)(t) ≥ · · · ≥ Dk
j,σ(|F|)(t) (the

abuse is because we do not explictly denote the dependence
of σ on j, t to reduce clutter), then we can decompose the
investment decisions per location, and find ykj that maximizes:

yk
∗

j ∈ argmaxyk
j
≥0

(k+1)T−1
∑

t=kT

⌊yk
j /b⌋
∑

f=1

Dk
j,σ(f)(t)−

Q(k)

V
hk
j y

k
j .

Above, yk
∗

j can be efficiently computed by listing partial

sums
∑

t

∑⌊yk
j /b⌋

f=1 Dk
j,σ(f)(t) for ykj /b = 1, 2, . . . until the

difference of one partial sum from the previous becomes

smaller than
Q(k)
V hk

j .

Mathematically speaking, the above might include cases
where the solution is to avoid investment alltogether (ykj = 0),

or buy storage for all files (ykj = |F|), however in practice
these cases are extremely rare, because of the skewness of
popularity: we will always benefit from storing popular files
and we will seldom benefit from storing unpopular ones.
Another remark is that this algorithm can be generalized in
a straightforward manner to the case where the cache leasing
is made on hour basis (i.e. when y change every slot). Below
we give the algorithmic steps to find y and z in detail.

Joint cache rental and file caching algorithm for given area-SBS
association (JCC) algorithm

Result: yk
j , z

k
j,f (t), ∀j, k, f, t

In day k, read values Q(k), xk
ij,f (t), λ

k
i,f (t), d

k
ij , dkis, h

k
j , ∀i, j, f, t

1: For all SBSs j,
2: For t = kT : (k + 1)T − 1,
3: For all files f ,
4: Calculate Dk

j,f (t) =
∑

i
(dkis − dkij)x

k
ij,f (t)λ

k
i,f (t)

5: End For
6: End For
7: Sort Dk

j,f (t) such that for permutation σ() we have

Dk
j,σ(1)(t) ≥ · · · ≥ Dk

j,σ(|F|)(t)

8: Set partial sums S(e) =
∑

t

∑e

f=1D
k
j,σ(f)(t),

9: Find e∗ which maximizes V S(e)−Q(k)hk
j be

10: Choose cache lease: yk
j = e∗b

11: For t = kT : (k + 1)T − 1,
12: Choose file placement:

zkj,σ(f)(t) =

{

1 if f ≤ ⌊yk
j /b⌋

0 otherwise

15: End For
16: End For

B. General Case with Overlapping SBS Coverage

Next, we consider the general case, where the areas that
SBS cover may overlap. In this case, area-SBS association
variables xk

ij,f (t) must be jointly decided with cache rental
and file placement. The daily problem becomes:

max
yk
j ≥0

zk
j,f (t)∈{0,1}

V gk(x
k, zk;λk)−Q(k)

∑

j∈J

ykj h
k
j , (15)

s.t.
∑

f∈F

zkj,f(t) ≤
yj
b
, ∀t ∈ {kT, . . . , (k + 1)T − 1}, j.

∑

j∈Ji

xk
ij,f (t)=1, ∀i, f, t.

We note that (15) is a mixed integer non-linear program
(MINLP) due to the product of variables xk

ij,f (t), z
k
j,f (t) that

appears in the objective inside gk. To proceed, we linearize
the objective by removing from it the variables zkj,f (t) and

instead introducing an extra constraint xk
ij,f (t) ≤ zkj,f(t). Note

that if zkj,f(t) = 0 then the constraint implies that xk
ij,f (t) = 0

as well, eliminating any delay benefit at the objective. Also
if zkj,f (t) = 1, variable xk

ij,f (t) is not affected by the new
constraint. To deal with the case where files are not cached,
We also add a dummy allocation variable xk

is,f (t) to ensure
that the constraint (3) is satisfied when file f is not cached
anywhere.

Having obtained a Mixed Integer Linear Program (MILP),
in the remaining of the paper we relax the integral placement
variables zkj,f (t) to take values in [0, 1], and we focus on the
continuous relaxation of our problem. This is useful because:

• Combining with randomized rounding [27], it is possible
to obtain approximation guarantees; this is left as future
work.

• The continuous relaxation also gives an explicit upper
bound on the maximum average delay benefit that can be
achieved. In practice, such bounds are extremely useful
to decide when to stop an iterative search for solutions.

• Last but not least, as explained in [7] it is possible
to use MDS codes to achieve an effective “fractional
file placement”. In essence, each cache stores a number
of linear combinations of file chunks which correspond
to fractions of a file, and then each user can combine
different such coded chunks to produce the original file.
In this context, our problem becomes a Linear Program.

Henceforth, we consider the following (LP):

(LP): max
xk,yk,zk

{

V
∑

j

∑

i

(dkis − dkij)
∑

f

∑

t

xk
ij,f (t)λ

k
i,f (t)

−Q(k)
∑

j

∑

f

hk
j y

k
j

}

,
(16)

s.t. xk
ij,f (t) ≤ zkj,f (t), ∀i, j, f, t, (17)

(3), (4),

We relax constraint (17) and introduce corresponding La-
grangian multipliers:

µk
ij,f (t) ≥ 0, ∀i, j, f, t. (18)

Joint cache rental, file caching and area-SBS association (JCCA)
algorithm

Result: xk
ij,f (t), y

k
j , z

k
j,f (t), ∀j, k, f, t

At the beginning of day k, update Q(k)
Initialization: τ = 1, µk

ij,f (t)[1] = 0, ∀i, j, f, t, UB = ∞, LB =
−∞, ǫ = 0.1 and τmax = 1000

1: While (|UB−LB
LB

| ≥ ǫ and τ ≤ τmax)

2: Solve (P1) to find solutions xk
ij,f (t)[τ],∀i, j, t

3: Solve (P2) to find solutions zkj,f (t)[τ],∀j, f, t
5: Update LB based on the found solutions
6: Update UB = L(λ,x,z), θ[τ] = γ UB−LB

||g[τ]||2

7: Update the dual variables µk
ij,f (t)[τ + 1]

using (22)
8: Update τ = τ + 1
9: End While

Then, we formulate the partial Lagrangian function

L(µk,xk,yk,zk)=V
∑

i,j,f,t

(dkis−dkij)λ
k
i,f (t)x

k
ij,f (t)

−
∑

i,j,f,t

µk
ij,f (t)(x

k
ij,f (t)−zkj,f (t))

−Q(k)
∑

j

∑

f

hk
j y

k
j ,

(19)

and the dual problem

min
µk≥0

max
xk,yk,zk

L(µk,xk,yk, zk), (20)

s.t. (3), (4). (21)

This problem can be solved in an iterative manner, using
the dual decomposition technique [28]. Technically, the dual
variables µk are updated at each iteration τ , and the primal
problem is solved according to multipliers µk[τ]. Then, the
primal solutions xk, zk are used to produce µk[τ + 1]. This
algorithm is summarized in JCCA algorithm.

The dual updates. In detail, since our Lagrangian
L(µk,xk,yk, zk) is not differentiable everywhere with re-
spect to µk, we will employ a subgradient method as in [29].
Every iteration τ , dual variables µk

ij,f (t) for all i, j, f and t
are updated as follows:

µk
ij,f (t)[τ + 1] =

(

µk
ij,f (t)[τ] + θ[τ]∇µk

ij,f (t)[τ]
)+

, (22)

where
[

·
]+

= max(0, ·), θ[τ] denotes the step size at iteration

τ , and∇µk
ij,f (t)[τ] is the (i, j, f, t) coordinate of a subgradient

vector at µk[τ]. A subgradient vector can be found as usually
by the actual value of the relaxed constrained–we omit proof
for brevity:

∇(µk
ij,f (t)[τ]) = xk

ij,f (t)[τ] − zkj,f(t)[τ], ∀i, j, f, t. (23)

The primal problem. Every iteration τ , the primal problem
is solved using dual variables µk[τ]. Thanks to the chosen
relaxation, the primal problem can be decomposed into two
sub-problems to determine xk and zk4:

(P1): max
xk

∑

i,j,f,t

[V (dkis − dkij)λ
k
i,f (t)− µk

ij,f (t)]x
k
ij,f (t), s.t. (3),

4Note that yk can be directly obtained from z
k .

(P2): max
yk,zk

∑

i,j,f,t

µk
ij,f (t)z

k
j,f (t)−Q(k)

∑

j,f

hk
j y

k
j , s.t. (4).

For (P1), observe that the objective function is a linear
function of xk

ij,f (t) so for each tuple (k, i, f, t) it suffices to

pick the SBS j with the highest V (dkis−dkij)λ
k
i,f (t)−µk

ij,f (t)
among all SBSs for all i and t.

We can solve (P2) similarly to (14) using the JCC algorithm
except for replacing Dk

j,f (t) with Uk
j,f (t) =

∑

i µ
k
ij,f (t). With

our decomposition we have achieved that in (P2) the decisions
are not coupled with area-SBS association xk, and the problem
is separable to each SBS. Due to the limited space, please refer
to our technical report [26] for detailed algorithm to solve (P2).

Our JCCA algorithm belongs to the class of dual sub-
gradient methods, which are using a non-summable but
square summable step size θ[τ] can be shown to converge
asymptotically to the optimal Lagrangian multipliers [29],
i.e. we may show that µ(τ) → µ∗. Since our relaxed
constraint is not smooth and as a result the partial La-
grangian is not differentiable everywhere, it follows that the
Lagrangian multipliers that solve the dual are not unique,
and hence the found dual variables do not immediately im-
ply a feasible (and hence optimal) primal solution. How-
ever, if we look at the cumulative average of primal iter-
ates, we can obtain such an optimal primal solution [30].
Therefore, to obtain the final solutions we use the av-
erages: xk

ij,f (t)[W] ← 1
W

∑W
τ=1 x

k
ij,f (t)[τ], ykj (t)[W] ←

1
W

∑W
τ=1 y

k
j (t)[τ] and zkj,f (t)[W] ← 1

W

∑W
τ=1 z

k
j,f (t)[τ].

JCCA algorithm finally produces as the optimal primal so-
lution (xk

ij,f (t)[W], ykj (t)[W], zkj,f (t)[W]) for some large W .

VI. PERFORMANCE EVALUATION

In this section, we execute simulations to demonstrate the
performance of the proposed elastic cache scaling algorithms.
Simulation setup. We consider a plane divided in 100 areas
where the size of each area is 20m×20m, and 4 SBSs and 1
MBS are randomly deployed. Transmission power of a SBS
is 30dBm whereas that of a MBS is 43dBm. The path loss
is set to be 128.1 + 37.6log10(d) where d is distance of the
BS from the center of each area, the system bandwidth is set
to be 10MHz. Average wireless delay from the MBS or SBSs
is calculated as the size of a file (50Mbytes) divided by the
average data rate for each area calculated by Shannon capacity
formula. Moreover, since the file retrieved from MBS requires
backhaul transmission, we assume that additional backhaul
delay, which is an average value from a dataset in [31], is
given. Demand shape for all hours in each day follows average
traffic demand from real trace [32], and file popularity over
days follows a normal distribution where mean values follow
Zipf distribution5 and variance is the mean value divided by√
12. Average cache rental budget is set to be a budget to lease

10% of total file sizes, and price to lease unit cache is set to
be 3.609× 10−4 dollars per bit per day [5].

We compare five algorithms including the proposed JCCA
and JCC algorithms. In the temporal cache budget sharing
(TCS) algorithm, there is a dedicated average cache rental
budget for each SBS, i.e., Bavg/J , hence each SBS manages

5We generate the popularity ranking randomly in each area.

100 200 300 400 500 600 700 800 900

Time instance [day]

1

1.5

2

2.5

3

3.5

4

In
s
ta

n
ta

n
e

o
u

s
 v

ir
tu

a
l
q

u
e

u
e

 [
d

o
lla

rs
/d

a
y
]

(a) Virtual queue stability.

4.5 5 5.5 6 6.5 7 7.5 8 8.5

Average queue length [dollars/day]

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

A
v
e

ra
g

e
 d

e
la

y
 b

e
n

e
fi
t

[s
e

c
s
/d

a
y
]

(b) Benefit-queue tradeoff.

Fig. 2: Operation of the JCCA algorithm.

10 15 20 25 30 35 40 45 50

Average cache budget [%]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
v
e
ra

g
e
 d

e
la

y
 b

e
n
e
fi
t
[s

e
c
s
/d

a
y
]

JCCA

JCC

TCS (temporal)

SCS (spatial)

FCB (fixed)

288%

82.66%

11.3%

Fig. 3: Average cache budget and average delay benefit tradeoff.

their own virtual queue independently. In the spatial cache
budget sharing (SCS) algorithm, cache rental budget is dedi-
cated to each SBS by considering average content popularity
for coverage of each SBS, and then existing content caching
and user association algorithm [33] is used. In the fixed cache
budget (FCB) algorithm, which is similar approach in [33], all
SBSs always have the fixed cache budget, i.e., Bavg/J .

Simulation results. We present our results by summarizing
the key observations as follows.

Operation of the JCCA algorithm. Fig. 2(a) shows statistics
of the virtual queue for all days of the proposed JCCA
algorithm. First, the stability of the queue demonstrates that
JCCA satisfies the budget constraint. Second, the variation of
the queue reveals that JCCA exploits opportunism of envi-
ronmental variations such as data rates and content popularity,
e.g., using more cache budget when wireless channel states are
good, and vice versa. Moreover, Fig. 2(b) depicts a tradeoff
between average delay benefit and average virtual queue for
different parameters V . Note that keeping the average virtual
queue length small makes the robustness to changes in the
statistics of the traffic profile. As the average virtual queue
increases, the average delay benefit becomes higher since the
degree of freedom to exploit the time-averaged cache rental
budget gets higher. This tradeoff curve directly verifies the
result of Theorem 1.

Cache budget and delay benefit tradeoff. Fig. 3 depicts
tradeoff curves between average delay benefit and average

cache budget for all algorithms. First, the average delay benefit
of the JCCA algorithm is 82.66% higher than fixed cache
budget algorithm (FCB) when the average cache budget is 20%
of entire file library. Second, this result implies that the impact
of the spatial and temporal cache budget sharing, applied in the
JCCA and JCC algorithms is critical in terms of average delay
benefit. Moreover, the difference of delay benefit between the
dynamic JCCA (or JCC) algorithm and static cache storage-
based algorithms, i.e., TCS, SCS and FCB becomes higher
as the average cache budget becomes tighter. It is due to the
fact that the effect of exploiting traffic profile among different
areas and time slots would be more important in tight cache
rental budget, similar to the philosophy of standard water-
filling algorithms.6 This is desirable result in a scenario that
small market CPs lease the edge caches in cellular networks.

VII. CONCLUSION

As a way to fully exploit average cache rental budget
for small-market content providers, we propose a joint cache
rental, file caching and region association, namely JCCA algo-
rithm in wireless elastic CDNs. The proposed policy makes an
effort to maximize average delay benefit of a service provider
while ensuring long-term cache rental budget under varying
file popularity and wireless channel states over time and space.
Simulation results reveal that the proposed dynamic JCCA
algorithm would be more important when the average cache
budget is very limited, which is one of common scenarios for
small-market content providers.

ACKNOWLEDGEMENT

This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement No 713567. The authors also

acknowledge the support from Science Foundation Ireland (SFI)

under Grant Number 17/CDA/4760. Moreover, the ideas and opinions

expressed in this paper are of the authors, and do not represent the

official position of Huawei Technologies.

REFERENCES

[1] “The elastic CDN solution (akamai-juniper).” [Online]. Available: https:
//www.juniper.net/assets/kr/kr/local/pdf/solutionbriefs/3510532-en.pdf

[2] Akamai White Paper, “The case for a virtualized CDN(vCDN)
for delivering operator OTT video.” [Online]. Available:
https://www.akamai.com/cn/zh/multimedia/documents/white-paper/
the-case-for-a-virtualized-cdn-vcdn-for-delivering-operator-ott-video.
pdf

[3] “Akamai collaborates with orange on NFV initiative
to dynamically scale CDN capacity for large events.”
[Online]. Available: https://www.akamai.com/us/en/about/news/press/
2016-press/akamai-collaborates-with-orange-on-nfv-initiative.jsp

[4] Huawei, “Huawei uCDN solution.” [Online]. Available: http://carrier.
huawei.com/en/solutions/cloud-powered-digital-services/ucdn

[5] “Amazon elastic CDN service - ElastiCache.” [Online]. Available:
https://aws.amazon.com/elasticache/

[6] AT&T, “AT&T business, content delivery network.” [On-
line]. Available: https://www.business.att.com/solutions/Family/cloud/
content-delivery-network/

[7] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Trans. on Inform. Theory, vol. 59, no. 12, pp. 8402–
8413, Sep. 2013.

6When the overall power available is less, the effect of exploiting
frequency selectivity across subcarriers would be greater.

[8] J. Kwak, Y. Kim, L. Le, and S. Chong, “Hybrid content caching in 5G
wireless networks: Cloud versus edge caching,” to appear, IEEE Trans.
on Wireless Commun., pp. 1–17, Feb. 2018.

[9] J. Kwak, L. Le, and X. Wang, “Two time-scale content caching and
user association in 5G heterogeneous networks,” in Proc. of IEEE
GLOBECOM, Dec. 2017, pp. 1–6.

[10] T. Bektas, O. Oguz, and I. Ouveysi, “Designing cost-effective content
distribution networks,” Computers & Operations Research, vol. 34,
no. 8, pp. 2436–2449, Aug. 2007.

[11] K. Ho, S. Georgoulas, M. Amin, and G. Pavlou, “Managing traffic
demand uncertainty in replica server placement with robust optimiza-
tion,” NETWORKING 2006. Networking Technologies, Services, and
Protocols, pp. 727–739, 2006.

[12] W. Li, E. Chan, Y. Wang, D. Chen, and S. Lu, “Cache placement
optimization in hierarchical networks: Analysis and performance eval-
uation,” NETWORKING 2008. Ad Hoc and Sensor Networks, Wireless
Networks, Next Generation Internet, pp. 385–396, 2008.

[13] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “On the optimiza-
tion of storage capacity allocation for content distribution,” Computer
Networks, vol. 47, no. 3, pp. 409–428, 2005.

[14] Z. Zhao, M. Peng, Z. Ding, W. Wang, and H. Poor, “Cluster content
caching: An energy-efficient approach to improve quality of service in
cloud radio access networks,” IEEE JSAC, vol. 34, no. 5, pp. 1207–1221,
May 2016.

[15] G. F. W. Jiang and S. Qin, “Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks,” IEEE Trans. on
Mobile Comput., vol. 16, no. 5, pp. 1382–1393, May 2017.

[16] M. Chen, W. Saad, C. Yin, and M. Debbah, “Echo state networks for
proactive caching in cloud-based radio access networks with mobile
users,” IEEE Trans. on Wireless Commun., vol. 16, no. 6, pp. 3250–
3535, Jun. 2017.

[17] F. Presti, C. Petrioli, and C. Vicari, “Distributed dynamic replica
placement and request redirection in content delivery networks,” in Proc.
of IEEE MOACOTS, 2007, pp. 366–373.

[18] J. Llorca, A. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi, and
D. Kilper, “Dynamic in-network caching for energy efficient content
delivery,” in Proc. of IEEE INFOCOM, 2013, pp. 245–249.

[19] G. Dan and N. Carlsson, “Dynamic content allocation for cloud-assisted
service of periodic workloads,” in Proc. of IEEE INFOCOM, 2014, pp.
853–861.

[20] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of
proactive caching in 5G wireless networks,” IEEE Commun. Magazine,
vol. 52, no. 8, pp. 82–89, Feb. 2014.

[21] M. Neely, “Energy optimal control for time varying wireless networks,”
IEEE Trans. on Inform. Theory, vol. 52, no. 7, pp. 2915–2934, Jul. 2006.

[22] S. Paris, A. Destounis, L. Maggi, G. S. Paschos, and J. Leguay, “Con-
trolling flow reconfigurations in SDN,” in Proc. of IEEE INFOCOM,
2016, pp. 1–9.

[23] L. Georgiadis, M. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundation and Trends in
Networking, vol. 1, no. 1, pp. 1–149, 2006.

[24] M. Neely, “Stochastic network optimization with application to commu-
nication and queueing systems,” Synthesis Lectures on Communication
Networks, pp. 1–211, 2010.

[25] J. Kwak, G. Paschos, and G. Iosifidis, “Dynamic cache rental and
content caching in elastic wireless CDNs,” Technical Report, Jan.
2018. [Online]. Available: https://www.dropbox.com/s/mpkj5rqlhiznua2/
Kwak18elasticCDN.pdf?dl=0

[26] P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[27] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[28] S. Boyd and A. Mutapcic, “Subgradient methods,” Lecture notes of
EE364b, Stanford University, Winter Quarter, 2006.

[29] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM Journal on Optimization,
vol. 19, no. 4, pp. 1757–1780, 2009.

[30] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube
network traffic at a campus network - Measurements, models, and
implications,” Elsevier Computer Networks, vol. 53, no. 4, pp. 501–514,
Mar. 2009.

[31] E. Oh, B. Krishnamachari, X. Liu, and Z. Niu, “Towards dynamic
energy-efficient operation of cellular network infrastructure,” IEEE Com-
mun. Magazine, vol. 49, no. 6, pp. 56–61, Jun. 2011.

[32] Y. Wang, X. Tao, X. Zhang, and G. Mao, “Joint caching placement and
user association for minimizing user download delay,” IEEE Access,
vol. 4, pp. 8625–8633, 2016.

