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Abstract—Massive Machine Type Communications are one of
the three main type of communication applications in upcoming
5G wireless networks. In this type of communication, the network
is required to handle a huge number of devices transmitting
information to the same base station receiver in an uncoordinated
manner. In this setting, the problem of minimizing energy usage
while achieving QoS requirements is a very complex stochastic
control problem with a very large number of optimizing agents.
In this paper, we propose a Mean Field Games model for this
problem that reduces the complexity by a great deal and is thus
amenable to numerical solution. Our model is general enough
to include generic rate functions, arbitrary energy and QoS re-
quirements per user, different channel fading models, and design
knobs for determining the importance of different performance
goals. We provide details of the proposed numerical solution and
present numerical results that illustrate the characteristics of the
obtained control policy.

Index Terms—Massive Machine Type Communications, En-
ergy Efficiency, Quality of Service, Mean Field Games.

I. INTRODUCTION

With the proliferation of Internet of Things (IoT), one of
the key requirements for wireless networks of the future will
be their ability to serve a huge number of wireless devices. It
is foreseen that in 5G (and beyond) networks, the density of
Machine-Type Communications (MTC) networks may surpass
1 million of devices per km2 [1]. Thus, despite network
densification, an extremely large number of machines will
desire to communicate with a serving base station (BS) each
with a small traffic requirement. Despite the low traffic per
device, the massive MTC (mMTC) scenario is one of the
most challenging of 5G and beyond, since we desire a com-
munication protocol that at the same time is (i) decentralized
(overheads for millions of devices cannot be tolerated), (ii)
energy-efficient (machines may need to be unattended for long
time), and (iii) guarantees QoS performance (such as low
average service time).

A typical barrier in this case is the curse of dimensionality,
whereby the large system state-space makes the discovery of
the optimal protocol extremely challenging and computation-
ally infeasible. To overcome this problem, and transform the
dimensionality from a curse into a blessing, we propose a
novel model based on Mean Field Games (MFG) [2] [3] [4].
In MFG, the optimal action of each device depends only on the
average behavior of other devices, which allows to efficiently
compute the optimal solution.

More specifically, we focus on the mMTC uplink of a
single cell containing one BS and a very large number of
transmitting devices using a Non-Orthogonal Medium Access
(NOMA) scheme which has been proposed as a candidate for
5G wireless networks mMTC. This type of medium access is
basically a Code Division Multiple Access (CDMA) scheme
with the difference that the transmitting devices do not have
codes that are completely orthogonal to each other. Although
orthogonal codes would be desirable for nearby devices, offline
assignment of orthogonal codes would require an impossibly
large number of orthogonal codes, while online assignment
would require a high degree of coordination, which is also
prohibitive in our setting.

NOMA resolves this issue by an a priori assignment of
codes that are quasi-orthogonal thus requiring a reduced num-
ber of codes to serve all devices, allowing some small degree
of overlap due to randomness. Yet, when any subset of the
devices transmit simultaneously, the transmitted information
can still be decoded at the receiver, albeit at a lower data rate
than if all devices transmitted with orthogonal codes.

In addition, NOMA can be combined with transmit power
control to improve both throughput and energy efficiency.
Power control has always been recognized as an important
problem for multiuser communications. In particular dis-
tributed power control policies, where mobile terminals can
freely choose their transmit power level pi(t) and do not need
to be controlled from central nodes, are of special importance
as they avoid the complexity, signaling overhead and delay of
centralized solutions. Notice that this is a very general scenario
where for example pi(t) can be chosen between two extremes
to emulate TDMA, or with a probability to emulate CSMA.

In our model, each device is given an energy budget and
a number of bits, and has to choose its own transmit power
in order to optimize a local utility increasing in remaining
energy and decreasing in transmission time. Since the uplink
channels are governed by a Markovian process, the design of
the optimal protocol naturally leads to a stochastic differential
game of large dimensions, a notoriously difficult problem to
solve. We propose a novel modeling via the Mean-Field Game
approximation, where the number of users is taken to infinity
and their actions remain coupled only via average entities,
allowing us to recover a set of equations which can be solved
numerically to provide the optimal protocol.



II. RELATED WORK

The problem of distributed power control in the uplink of
a single cell using a CDMA MAC has been modeled as a
stochastic differential game in [5]. The players in this game
are the transmitters who adapt their power level to the quality
of their time-varying link with the receiver, their battery level,
and the strategy updates of the other transmitters. The paper
is of theoretical nature providing a simple sufficient condition
for the existence of a Nash equilibrium in this game. As the
uniqueness and determination of equilibria are difficult issues
in general, especially when the number of players goes large,
the paper addresses two special cases: the single player case
and the large number of players case. The latter case is treated
with a MFG approach for which reasonable sufficient condi-
tions for convergence and uniqueness are provided. Illustrative
numerical results which indicate that this MFG approach can
lead to significant gains in terms of energy efficiency are
shown in [6].

In this paper, we follow a similar model as in [5] and
[6]. However, we shift our attention to Quality of Service
considerations and more specifically the need to transmit a
given number of information bits with a small delay. Latency
requirements are important in a wide range of applications
and receive considerable attention in 5G networks design.
The problem of meeting latency requirements over wire-
less links is particularly challenging due to channel quality
fluctuations which require adjustments to the transmission
parameters (transmit power, modulation and coding scheme,
etc) to achieve an optimum trade-off between transmission
rate, packet error rate and energy efficiency [7] [8].

A recent paper [9] applies MFG techniques to develop a
transmit power selection policy with the goal to optimize
a combined cost of average queue length and energy con-
sumption. Although the problem is formulated in the general
case, in order to keep the solution mathematically tractable, a
bufferless queue and a two-state channel are considered. In our
paper we tackle the bufferless problem and consider a more
general channel model which is similar to the channel model
adopted in [5] [6]. We keep the mathematical solution tractable
by applying an appropriate optimization objective which leads
to a stationary solution, thus removing the dependence on time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a large number K of wireless devices which
need to transmit information to the same base station receiver
using a NOMA scheme. Each device receives at random times
a number of bits that it needs to transmit to the common
receiver and a certain energy budget for transmitting those
bits. To make the model as generic as possible, the number of
bits and energy budget are randomly drawn from a known
probability distribution on [0, Bmax] × [0, Emax]. At any
time t the i-th device can choose its own transmit power
pi(t) ∈ [0, Pmax]. The achievable instantaneous transmission
rate is given by

ri(t) = Rf(γi(p1(t), p2(t), . . . , pK(t))) (1)

where R is a constant (in bits/s) and γi is the Signal to
Interference plus Noise Ratio (SINR) after Matched-Filter
detection at the receiver of a random CDMA scheme [10, Sec.
12.2] expressed as

γi(p1(t), p2(t), . . . , pK(t)) =
pi(t)Hi(t)

σ2 + 1
M

∑
j∈K,j 6=i

pj(t)Hj(t)

(2)
where Hi(t) is a parameter representing the quality of the
channel between the i-th transmitter and the receiver, σ2 is
a constant which models the communication noise effects at
the receiver, M is the length of each CDMA spreading code
(with the common assumption that as K grows large, K

M → c,
with c being a finite constant [10, Sec. 12.2]), and f(·) is a
function which depends on the transmitter’s capabilities and
knowledge of the current SINR. Sophisticated transmitters
which can use many modulation and coding schemes and
adapt the used scheme to the current SINR can approximate
the Shannon capacity limit. In this case f(x) = log2(1 + x).
For simpler transmitters employing a single modulation and
coding scheme, f : R+ → [0, 1] is a sigmoidal function which
represents the bit success rate. In general, other choices of
smooth increasing functions can be used.

The channel quality Hi(t) evolves according to a random
process which depends on many factors. A vast literature on
modeling the evolution of the channel as a random process
exists. We are going to adopt a commonly used model which
is both representative of practical scenarios and amenable to
mathematical analysis: different channel qualities are assumed
to be independent and identically distributed (i.i.d) and each
Hi(t) is assumed to follow a reflected Brownian motion in
the interval [Hmin, Hmax]. Note however, that our problem
formulation and solution does not depend on the nature of
the random process Hi(t) and can be easily applied to a vast
range of different random processes.

The dynamics of the system can be modeled as follows:

dEi(t) = −pi(t)dt
dBi(t) = −ri(t)dt (3)

dHi(t) =
√

2νdWi(t)

where Ei(t) is the amount of remaining energy budget for
device i and Bi(t) is the amount of information (in number
of bits1) that device i has still to transmit, both at time t.
Wi(t) denotes a Wiener process on a given probability space
modeling the fluctuations of the channel quality Hi (fading)
and the parameter ν > 0 describes the intensity of the fading
(it can be used to capture slow or fast fading). Note that in the
above dynamics, the actions of each device affect the states
of all other devices through the dependence of ri(t) to all the
pi(t), i = 1, . . . ,K.

The goal of each device is to transmit all its information
bits within its energy budget and with an optimal trade-
off between energy consumption and the time needed to

1we assume a fluid model under which the number of bits is seen as a
continuous variable



complete the transmission. We can model this phenomenon
as a Stochastic Differential Game (SDG), that is, K coupled
stochastic optimal control problems. We assume that device i
will exit the game once it has transmitted all the information,
i.e., when Bi(t) = 0 or when it is out of energy, i.e., Ei(t) = 0
(whichever comes first). We denote by τi the first time at
which one of these conditions is satisfied. Each device faces
the stochastic optimal control problem:

sup
0≤pi(0→τi)≤Pmax

E
[∫ τi

0

−θe−λtdt+ e−λτiψ(Ei(τi), Bi(τi))

]
(4)

where ψ () is an appropriate terminal utility which is an
increasing function of the amount of remaining energy and
a decreasing function in the number of information bits not
transmitted at the exit time, e.g., ψ(Ei(τi), Bi(τi)) = Ei(τi)−
Bi(τi), θ > 0 is a parameter of the model that puts appropriate
weights on the utility depending on the exit time (the first
term) and depending on the exit cost (the second term), and
λ is the inter-temporal preference rate of the devices (i.e., the
weight they put on the present versus the future). The intuition
behind the utility function in (4) is that it penalizes devices
the longer they stay in the system (through the first term),
and the more energy they have consumed and the less bits
they have transmitted when they exit the system (through the
second term). The multiplicative factor e−λt guarantees that
the average cost or utility function stays finite. Let us note that
τi is not a control but it is a function of the whole trajectory
of device i, thus a function of pi and of (pj)j 6=i (because of
the coupling).

In this infinite horizon SDG, the control of a device i is its
transmit power pi(t) which is allowed to depend not only on
time, but on its own state (Ei, Bi, Hi) and on the states of all
other devices in the system. This is an extremely complicated
problem not only because of the huge number of variables and
couplings involved but also because in practical implementa-
tions the communication overhead of relaying all the state of
each device to each other device will be prohibitively large. In
order to arrive at a practical and efficient scheme, we propose
below to use a MFG limit for this game.

In practical situations, the same devices can enter and exit
the game over and over again as their transmitters get some
data to transmit at random time instances from the applications
running on the device. As we want to keep the model simple,
without considering the need for buffering data received in
more than one round, we assume that devices that are in
the game (having still data to transmit) cannot receive new
data from their application layer. We assume that such a data-
blocking event happens with an extremely small probability as
the mean exit time (during which the device is in a blocking-
additional-data mode) is much smaller than the minimum
inter-arrival time of new data.

IV. MEAN FIELD GAME ANALYSIS

It is well known [5] [6] that this type of SDG can be
simplified by considering the MFG regime as K −→ ∞. In

this setting, a player has interactions with the other players
only through mean field terms (averaged quantities), which in
our problem is the SINR experienced by the player. Because
the coupling between the players only appears through an
averaged quantity, the optimization problem faced by a generic
player only depends on the distribution m of other players.

Moreover, let us note that in the SDG with K players,
as devices reach their exit time, they exit the game. Thus
the number of players in the game is decreasing over time,
and will eventually reach 0, making the game trivial. We
assume in this MFG that new players arrive randomly in the
game according to a Poisson process and that the state of a
newly arriving player is randomly drawn from a distribution
ms(E,B,H). Because the problem has an infinite horizon
and the distribution of arriving player ms as well as the
terminal utility ψ(E,B) do not depend on time, the Nash
equilibrium is stationary, i.e., it does not depend on time.
If we denote by u the value function of the MFG (and
by m the non-normalized density of the devices), then a
stationary Nash equilibrium is described by a solution of the
following stationary system of PDE (the first PDE is the
infinitesimal dynamic programming principle and the second
one the infinitesimal local conservation of the number of
devices) on Ω = (0, Emax)× (0, Bmax)× (Hmin, Hmax):

λu− ν∂HHu+ p∗∂Eu+Rf(
Hp∗

Γ
)∂Bu+ θ = 0 (5)

−ν∂HHm− ∂E(p∗m)−R∂B
(
f(
Hp∗

Γ
)m

)
= ms (6)

where, p∗ is the optimal strategy, i.e., the solution of

p∗(E,B,H) = argmax
0≤p≤Pmax

{
−p∂Eu−Rf(

Hp

Γ
)∂Bu

}
(7)

and Γ is representing the mean field coupling of the two PDE
through the interference experienced by a generic player which
is given by:

Γ = σ2 + c

∫ ∫ ∫
Ω

h p∗(E,B,H)m(E,B,H) dB dE dH

(8)

The above system of PDE is subject to the following
boundary conditions:

u(0, B,H) = −B
u(E, 0, H) = E (9)

∂Hu(E,B,Hmin) = 0

∂Hu(E,B,Hmax) = 0

Most of the boundary conditions above are self-evident. The
last two boundary conditions are a direct consequence of
the fact that the channel state H is modeled as a reflected
Brownian motion in [Hmin, Hmax].

The above system of PDE ((5) - (9)) is typical in MFG.
We refer the reader to [2] [3] for more details on this system.
Equation (5) is known as the Hamilton-Jacobi-Bellman (HJB)
equation and given a fixed mean field Γ, its solution is the



value function of a generic player facing (4) whose dynamics,
under a choice of control p, evolve according to:

dE(t) = −pdt

dB(t) = −Rf(
pH

Γ
)dt

dH(t) =
√

2νdW(t)

where (W(t))t≥0 is a reflected brownian motion in
[Hmin, Hmax]. It is classical to check by a verification ar-
gument that such a trajectory is optimal for the players.
The Fokker-Planck (FP) equation (6) is solved by the non-
normalized density of devices, provided that with energy E,
data left to transmit B and quality of channel H , all the
devices use the control p∗(E,B,H). Moreover let us note
that we can solve the problem of a given device by solving
this system. Indeed if a device is in the state (E,B,H) it uses
the optimal control p∗(E,B,H). Thus, the state of a device
being at (E0, B0, H0) at time t0 evolves according to:

dE(t) = −p∗(E(t), B(t), H(t))dt;

dB(t) = −Rf(h
p∗(E(t), B(t), H(t))

Γ
)dt;

dH(t) =
√

2νdW(t);

E(t0) = E0;B(t0) = B0;H(t0) = H0;

while min(E(t), B(t)) > 0. Hence, knowing the solution
of the MFG system, the players can compute their optimal
control depending only on their own state, provided that all
the other devices use the control p∗(E,B,H) while in the
state (E,B,H), making their anticipation of the mean field
(the value of Γ) correct. We recall that we are looking for
Nash equilibria of the game.

This system of equations has no closed form solution
and must be solved numerically. We provide below some
explanations on how to solve the MFG system numerically, see
[11] for more information. In order to solve the PDE problem
at hand we propose the following iterative method:

We start from a given value of Γ and we fix a parameter
1 ≥ η > 0. We then proceed as follows:
• Solve the two PDE (5) and (6) using a finite differences

scheme. Note that for a fixed Γ, (5) does not depend on
the solution of (6), thus we solve first (5) and then (6).

• Calculate Γ′ using equation (8), and update Γ according
to:

Γ = (1− η)Γ + ηΓ′ (10)

• Iterate until |Γ− Γ′| < ε, where ε is a very small positive
number setting the convergence criterion.

Although we do not have any formal proof of convergence,
the proposed iterative method seems to always converge in the
simulation experiments we have run.

To solve the system (5), (6), (7) we work on a uniform grid
Gl of l3 points on [0, Emax]× [0, Bmax]× [Hmin, Hmax]. A
function on Gl is associated to an element of (RN )3, where
N = 1

l . The steps on the grid are of size dE = Emax

N ; dB =

Bmax

N ; dH = Hmax−Hmin

N . First, we find a zero of the function
F (u) defined on (RN )3 by:

F (u)e,b,h =λue,b,h + θ + p∗e,b,h
ue,b,h − ue−1,b,h

dE
+

Rf(
Hhp

∗
e,b,h

Γ
)
ue,b,h − ue,b−1,h

dB
− (11)

ν
ue,b,h+1 − 2ue,b,h + ue,b,h−1

dH2

where 1 ≤ e, b, h ≤ N ; p∗e,b,h is given by:

p∗e,b,h = argmax
0≤p≤Pmax

{
−pue,b,h − ue−1,b,h

dE
− (12)

Rf(
Hhp

Γ
)
ue,b,h − ue,b−1,h

dB

}
and Hh is given by:

Hh = Hmin +
Hmax −Hmin

N
h.

We use as boundary conditions the standard conventions that
for any 1 ≤ e, b, h ≤ N :

u0,b,h = −Bmax
b

N

ue,0,h = Emax
e

N
ue,b,0 = ue,b,2

ue,b,N+1 = ue,b,N−1

We then use a Newton algorithm to find a solution of F (u) =
0. The function F is the discretization of the HJB equation,
hence solving F (u) = 0 yields a numerical solution of the
HJB equation.

In order to solve the Fokker-Planck equation (6), we use the
newly found solution of the HJB equation u ∈ (RN )3, such
that F (u) = 0. Then we define F̃ by F̃ (u)e,b,h = F (u)e,b,h−
λue,b,h − θ, and we look at the linear problem:

(DF̃ (u))Tm = mh
s

where DF̃ (u) stands for the differential of F̃ at u, the
unknown is m ∈ (RN )3 and ml

s ∈ (RN )3 is the numeri-
cal approximation of ms. This linear problem is the direct
analogous of the FP equation.

V. NUMERICAL RESULTS

In this section we provide numerical results that illustrate
the control strategies obtained as a solution to our MFG
formulation of the optimal transmit power problem. In order
to obtain these results we have used the following parameters:
• R = 8 Mbps (= 8× 106 bps)
• Pmax = 0.1 Watt
• σ2 = 1
• c = 500
• ν = 0.28
• Emax = 1 Joule
• Bmax = 1 Kbit (= 1000 bits)



(a) h = 1(H = 0.2) (b) h = 5(H = 0.5862).

(c) h = 6(H = 0.6828). (d) h = 11(H = 1.1655).

Fig. 1. Optimal transmit power as a function of remaining energy E and remaining bits to transmit B.

• Hmin = 0.2
• Hmax = 3.0
• θ = 0.101
• λ = 0.1

We have also assumed a uniform source rate ms(E,B,H)
= 0.1 everywhere, a simple function ψ(Ei(τi), Bi(τi)) =
Ei(τi) − Bi(τi) and the Shannon capacity approximation for
the achievable rate, i.e., that f(x) = log2(1 + x).

Using the above parameters we have solved numerically the
system of PDE characterizing the MFG as described in the
previous section for N = 30. In Figure 1, we plot the optimal
transmit power as a function of E and B for different values
of h. Let us note that because we choose the parameters such
that λ−1θ > Bmax , there is no device which has an interest
not to exit the game. Indeed, −λ−1θ is the cost to stay in the
game forever and −Bmax is the worst possible terminal cost.

A first important observation is that the optimal policy takes

the values 0 or Pmax at almost all grid points. We can see that
as the quality of the channel grows, the number of points in
the (E,B) plane for which p∗(E,B,H) = Pmax grows as
well (we don’t plot p∗ for high values of H , as for h ≥ 21
it is p∗(E,B,H) = Pmax for all (E,B)). When a device
experiences very low channel quality (Figure 1(a)), it doesn’t
want to spend energy to get some bits transmitted in two cases:
(i) when it has a lot of energy left and few bits to transmit and
(ii) when it has little to medium energy left and many bits to
transmit. In the first case, the device has the luxury to wait for
better channel conditions as it only has a few bits to transmit
and hence it can complete their transmission in a small amount
of time. In the latter case, the device has little energy left and
prefers to wait for safer channel conditions. As the quality of
the channel improves, both the areas corresponding to cases
(i) and (ii) above shrink in size with the area corresponding to
case (i) shrinking and disappearing faster (Figures 1(b), 1(c),



Fig. 2. Expected exit time (in milliseconds) as a function of energy budget
E and received bits to transmit B. This is identical to the expected remaining
time in the game as a function of remaining energy and remaining bits to
transmit.

and 1(d)).
In Figure 2, we plot the expected exit time E [τi(E,B)]

averaged over channel quality, for a device that has received
B bits to transmit with an energy budget of E Joules. Note
that this is also the expected remaining time in the game for
a device that at some point in time has B remaining bits
to transmit and E Joules of remaining energy. As expected,
E [τi(E,B)] is an increasing function in both E and B.

VI. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

The problem of minimizing energy usage while achieving
QoS requirements in uncoordinated uplink transmissions for
MTC users is a very complex stochastic control problem with
multiple agents. We have proposed a MFG model for this type
of problems that reduces the complexity by a great deal and
is thus amenable to numerical solution. Our model is general
enough to include generic rate functions, arbitrary energy and
QoS requirements per user, different channel fading models,
and design knobs for determining the importance of different
performance goals.

A lot of extensions to the model presented in this paper seem
possible and easy to compute. We are particularly interested
to the case of non-identical and correlated channels which
is both encountered in practice and of theoretical interest in
MFG. Indeed, in MFG literature the correlated channels case is
known as MFG with common noise and its solution involves
the so-called master equation. This will be the subject of a
future work. Other potential extensions include the case where
the QoS quantity of interest is not the mean transmission delay
but the probability that a given delay threshold is exceeded.
Another interesting case is when arriving data from the appli-
cation layer are stored in a buffer forming a FIFO queue and
the objective is to control the queue length. Finally, we believe
practical questions can be solved by applying MFG inspired
policies in actual systems. Such practical questions include the

robustness of the control policies to various errors, including
errors in estimating the channel quality at the transmitter and
MFG approximation errors, i.e., how good is the control policy
derived for the MFG limit (K −→∞) when applied by a finite
(yet large) number of transmitters.
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