
No Regret in Cloud Resources Reservation
with Violation Guarantees

Nikolaos Liakopoulos1,2, Georgios Paschos1, Thrasyvoulos Spyropoulos2

1Mathematical and Algorithmic Sciences Lab, FRC, Huawei Technologies SASU, email: firstname.lastname@huawei.com
2EURECOM, Sophia-Antipolis France, email: spyropou@eurecom.fr

Abstract—This paper addresses a fundamental challenge in
cloud computing, that of learning an economical yet robust
reservation, i.e. reserve just enough resources to avoid both
violations and expensive over provisioning. Prediction tools are
often inadequate due to observed high variability in CPU and
memory workload. We propose a novel model-free approach that
has its root in online learning. Specifically, we allow the workload
profile to be engineered by an adversary who aims to harm
our decisions, and we investigate a class of policies that aim to
minimize regret (minimize losses with respect to a baseline static
policy that knows the workload sample path). Then we propose
a combination of the Lyapunov optimization theory [1] and a
linear prediction of the future based on the recent past, used in
learning and online optimization problems, see [2]. This enables
us to come up with a no regret policy, i.e., a policy whose cost
difference to the benchmark and violation constraint residual
both grow sublinearly in time, and hence become amortized over
the horizon. Our policy has then “no regret”, and eventually
learns the minimum cost reservation subject to a time-average
constraint for violations.

I. INTRODUCTION

A fundamental challenge in cloud computing is to reserve
just enough resources (e.g. memory, CPU, and bandwidth) to
meet application runtime requirements [3]. We desire reser-
vations that accurately meet the requirements: resource over
provisioning causes excessive operation costs, while under
provisioning may severely degrade service quality, causing
interruptions and real-time deployment of extra resources,
which costs heavily [4]. The problem resembles the well-
known newsvendor model [5], where we seek an inventory
level that maximizes the vendor revenue versus a forecast
demand. In cloud computing, however, the common assump-
tion of demand predictability does not hold. Recent experi-
mentation in a Google cluster [6] shows that the profile of
cloud resources exhibits highly non-stationary behaviour, and
prediction is very difficult, if not impossible. Furthermore,
in the increasingly relevant scenario of edge computing, the
workload is expected to vary quickly with geography, mobility,
and user application trends, and therefore its fluctuations will
be even more unpredictable. All these motivate the approach
in this paper; to design a model-free online reservation policy
for cloud computing using ideas from machine learning.

A concern with machine learning approaches is that their
exploration phase combined with occasional unpredictability,
may lead to an unforeseen violation of an important constraint.
In our case, reserving fewer resources than needed for long
time periods may potentially mount a serious threat on the

0 1000 2000 3000 4000 5000 6000 7000 8000
Measurements

0

1000

2000

3000

4000

5000

U
ni

ts
 o

f R
es

ou
rc

es

CPU
MEM

Fig. 1. Aggregate resource utilization of the Google Cluster. The resources
are normalized with respect to the server with the highest memory and CPU.
Every point corresponds to 5mins, up to 29 days measured. The fluctuations
are characterized as unpredictable in [6].

operation of the cloud system. Therefore, apart from the
demand unpredictability, we are faced with the extra challenge
of guaranteeing that the average resource violations will not
exceed a pre-defined threshold. To address both aforemen-
tioned challenges at once, we cast the problem of resource
reservation in the setting of constrained-Online Convex Opti-
mization (OCO), seeking to find a no regret policy with vio-
lation guarantee. This is an extension of the standard machine
learning framework OCO, where the online policy competes
versus adversarial resource demands. The performance metric
is the regret, i.e. the cost difference between our policy and
the best static reservation with knowledge of the entire demand
sample path. We seek to find an online policy that achieves
zero average regret under its worst adversary (a condition
known as “no regret”), while we require from our policy to
satisfy a time-average constraint that concerns the number of
violations occurring in the studied time period. To the best of
our knowledge, no previous work has addressed the problem of
reserving cloud resources in this setting. The main contribution
of this paper is to design the Time Horizon Online Reservation
(THOR): a feasible “no regret” resource reservation policy.

A. Prior Work

The framework of OCO is used to minimize the sum
of convex functions

∑
t ft(xt) where ft is revealed to the

optimizer after the action xt is taken. It was inspired by the
seminal paper of Zinkevich [2], who proposed to predict ft as a
linearization of ft−1 and take a gradient step in the direction of
∇ft−1(xt−1). OCO allows us to design model-free algorithms

that are data-driven and robust to environment changes cf. [7],
[8], since the “no regret” property is extremely powerful; it
implies that our online algorithm learns to allow the same
average losses as a static policy that knows the future. We
study a slightly perturbed setting of OCO, where the function f
is static and known, but the constraint function

∑
t gt(xt) ≤ 0

is chosen by the adversary.
A number of past works have focused on constrained-OCO

problems. The simplest case is when the constraint is not
adversarial, and limits the policy actions in the same manner
at each time slot. This is addressed in the online gradient of
Zinkevich via a projection, but to extend to cases with compli-
cated sets [9], [10] proposed an alternative approach based on
Lagrangian relaxation. If we have a time-average constraint
coupling the decisions over time, [11] uses self-concordant
barrier functions to relax it, while [9], [10] provides a dual
algorithm. While these methods ensure asymptotic feasibility–
the constraint residual

∑
t g(xt) scales as o(T)–they do not

apply to our problem, where the constraint set is shaped by
adversary-selected (time changing) convex functions.

The well-known result of [12] states that in general it is
impossible to simultaneously achieve o(T) regret and asymp-
totic feasibility in constrained-OCOs where both objective and
constraint set are tinkered by an adversary. However, [13]
showed that it is possible when there exists a static solution
which strictly satisfies all constraint functions at every slot (a
Slater vector). With the approach of [13], however, the “no
regret” property is provided with respect to the Slater vector,
meaning that applying [13] to our problem will yield a feasible
resevation policy, but with a poor cost guarantee due to the
restrictive assumption of ensuring the constraint at every slot.
Consider a benchmark static reservation that only satisfies the
average constraint every K slots. Then as K increases, the
constraint is looser and we obtain a stronger guarantee, but
establishing the guarantee may become harder. While [13]
proves the case K = 1, in this paper we prove the case where
K = O(T 1−ε), and propose the online policy THOR, which
is asymptotically feasible and provides o(T) regret.

B. Our Contribution

We formulate the problem of reserving resources for cloud
computing as a constrained-OCO. At each slot, (i) an online
reservation policy decides a reservation vector, then (ii) the
adversary decides a demand vector, and last (iii) a cost is
paid for the reserved resources and a violation is noted if
the demand was not covered by the reservation. A reservation
policy is feasible if at the end of the T -slot horizon the number
of violations of resource i are no more than a configurable
εiT . We seek to find a feasible policy that achieves no regret
with respect to the best static reservation in hindsight while
satisfying the violation constraint at all K-slot windows within
T . Our contributions are summarized as follows:

• We introduce a natural machine learning approach for re-
serving resources for cloud computing. Our constrained-
OCO framework is an ideal setup for investigating more

complicated scenarios with reservations, e.g., reserving
resource slices in wireless networks.

• We propose THOR, a policy we prove to achieve asymp-
totic feasibility and “no regret” with respect to a bench-
mark constrained to K = O(T 1−ε) slots, the first of its
kind. The performance guarantees of THOR are obtained
by a novel combination of the Lyapunov K-slot drift
technique with the linearization idea of Zinkevich. THOR
inherits the simplicity of online gradient, and therefore is
straightforward to implement in practical systems.

• We have validated THOR resource reservations using a
public dataset provided by Google [14]. THOR vastly
outperforms our implementation of the textbook Follow
The Leader (FTL) policy in guaranteeing the violations
constraint, while it achieves similar or sometimes better
performance than the static oracle T -slot policy, in the
challenging, non-stationary CPU workload.

II. SYSTEM MODEL

Requests. Our system operates in slots t = 1, . . . , T , with
T being the horizon. In slot t the cloud users request λti
units of resource i (for example i = 1 refers to CPU and
i = 2 to memory). We consider I types of resources. To
model the fact that the vectors λt are drawn from a general
distribution D(λ1, . . . ,λT) (hence model-free), we allow them
to be selected by an adversary who aims to harm our system.

Reservations. A reservation policy π decides at each slot to
reserve xt,πi units of resource i. Formally, at time t an online
reservation policy is a mapping from past requests to a vector
of nonnegative values:

π : (λ1, . . . ,λt−1,x1, . . . ,xt−1)→ R
I
+.

The above is depictive of the action order within a slot, i.e.,
first a reservation xt,π is made, and then the adversary reveals
the values λt. There is a cost ci attached to each resource,
and therefore at the end of slot t, policy π incurs a cost

C(xt,π) =

I∑
i=1

cix
t,π
i .

Violation guarantees. Let vti denote the event of resource
i violation in slot t, which occurs when the request for a
resource exceeds the reservation, i.e., vti , 1

{
λti > xt,πi

}
.

A policy π is called feasible if the time-average violations of
resource i do not exceed a pre-determined threshold εi:

1

T

T∑
t=1

E
[
vti
]
≤ εi, for all i = 1, . . . , I.

Hence, the feasibility constraint of resource i can also be
written in the form:

T∑
t=1

P
(
λti > xti

)
≤ εiT. (1)

Observe that the above constraint couples the decisions across
the entire horizon. Our initial objective is to find a feasible
policy that minimizes the total cost

∑T
t=1 C(xt,π), however,

since in slot t the arrivals λt are unknown, such an objective is
out of reach. Next, we provide an alternative approach through
the framework of Online Convex Optimization (OCO).

Regret. We introduce the performance metric of regret,
which is commonly used in the literature of machine learning
to measure the robustness of online algorithms [7], [8]. The
regret RπT is the cumulative difference of losses between
policy π and a benchmark policy which is aware of the
entire sample path λ1, . . . ,λT but forced to take a static
action throughout the horizon–often called best static policy
in hindsight. Specifically, let x∗ denote our benchmark, which
is calculated as the solution to the following problem:

x∗ ∈ arg min
x∈RI

+

T C(x) s.t.
T∑
t=1

P
(
λti > x∗i

)
≤ εiT.

Then the regret is defined as follows:

RπT = inf
D
E

[
T∑
t=1

C(xt,π)− T C(x∗)

]
,

where the infimum is taken w.r.t. the supported distributions
of the adversary, and the expectation w.r.t. the (possibly)
randomized xt,π,λt. If RπT = o(T), then we say that policy
π has “no regret”, since RπT /T → 0 as T → ∞, i.e., the
average losses from the benchmark are amortized. Our goal is
to obtain a feasible online reservation policy with “no regret”.

A. Modified Adversary

In this subsection we introduce two innovations with respect
to the classical OCO framework, one related to the decisions of
the adversary, and one to the benchmark we compare against.

Probabilistic adversary support. It is customary to limit
the actions of the adversary to be no more than a finite value
Λi,max for resource i. In our problem, this hard constraint is
problematic: (i) small Λi,max (e.g. set equal to the maximum
observed value) will cause our algorithms to “think” that an
action xti = Λi,max ensures a violation-free slot, which will
incur instability should a flow of larger values occurs in the
future, while (ii) large Λi,max will force our algorithms to
consistently overbook in order to ensure no violation, leading
to very poor performance.

To address this issue, we propose the idea of bounding the
adversary with a stationary process with known distribution;
the distribution is configured based on the data. Specifically,
in this paper we set Λti to be an i.i.d. Gaussian process, and
then restrict the adversary to λti ∈ [0,Λti]. The benefit of
this approach lies in the elasticity offered by the stationary
process. Due to the concavity of its cumulative distribution,
our algorithms will be able to learn tradeoffs between the
probability of violations and the investment cost. We mention
that despite Λt being stationary, the actual arrivals λt remain
model-free and possibly non-stationary.
K-slot feasibility. When showing that policy π has no

regret, we are effectively showing that π achieves the same
average performance with the benchmark. It is useful then
to introduce a class of benchmark policies that ensure the

0 5 10 15 20 25 30 35 40
K Slot Policies

8

9

10

11

C
os

t

K-Slot Policy

THOR

T-Slot Policy

Fig. 2. Average cost comparison in a repeated randomly generated instance.
Adversary uniformly selects λti ∈ [0,Λt

i] in the course of the experiment,
while Λt

i is maintained between the multiple runs of the experiment. The
plotted points represent the cost of K(=[1,40])-slot benchmark policy, the
black line is the T-slot benchmark policy and the red line is our policy.

violation constraint for all windows of K slots within the
horizon T :

x∗(K) ∈ arg min
x∈RI

+

T C(x) (2)

s.t.
K−1∑
k=0

P
(
λt+ki > x∗i

)
≤ εiK, ∀t = 1, . . . , T −K.

Observe that for K = T we obtain the original benchmark.
However, as K decreases, we will have an interesting trade off:
on one hand, the benchmark should ensure the average viola-
tions in shorter periods, hence it will incur higher investment
costs (as the optimization above will have a stricly smaller
constraint set), on the other hand it might be easier to prove
the “no regret” property. Indeed, prior work [13] produced
a “no regret” policy versus a benchmark which satisfies the
violation constraint at every slot (K = 1). Note, however,
that such a guarantee is compromised in our problem. For
example, in Fig. 2 we plot the performance of K benchmarks,
where we observe greatly increased cost for K = 1. We
also observe that, initially increasing K enhances greatly the
achieved performance, but the returns are diminishing. In this
paper, we will obtain a “no regret” guarantee for the case when
K = O(T 1−ε).

III. QUEUE ASSISTED ONLINE LEARNING ALGORITHM

In this section we present our algorithm, and provide
intuition into its functionality. An online reservation policy
is called in slot t to update the decisions from xt−1 to xt.
In order to explain how THOR performs this update, we
will discuss some intermediate steps, namely (i) the constraint
convexification (ii) the predictor queue, and (iii) the drift plus
penalty plus smoothness. Finally, we will present THOR and
show how it naturally arises from these three steps. Formal
performance guarantees are presented in the following section.

A. Constraint Convexification

In this subsection, we propose a convex approximation for
the feasibility constraint Eq.(1). This constraint will be tighter
as it will become obvious below. We presented in the system

model P (λti > xti) to be the quantile function of the adversary
for every slot t and resource i. This function is a non-
increasing function, but can be non-convex. For the approxi-
mation we will use Λ which we assume to be an i.i.d. Gaussian
process that caps the distribution of the adversary λti ≤ Λti.
For ease of exposition, we define Fλt

i
(xti) , P (λti > xti). By

our assumption, it is true that:

Fλt
i
(xti) ≤ FΛt

i
(xti).

Furthermore, since the quantile function of the Gaussian
distribution is quasiconvex we can design a convex envelope
function for FΛ:

FEt
i
(xti) =

{
Gti x

t
i + βi, x

t < µi

FΛt
i
(xti), otherwise,

where Gti = F ′Λt
i
(µi) and FΛt

i
(xti) ≤ FEt

i
(xti). Hence, for

reservations less than µi the CCDF is enveloped by a linear
function that decreases by Gti. We note that this is defined for
the theoretical proofs to follow through, but also it is relevant
to practice, in the unlikely case of loose guarantees (big εi)
or extremely optimistic error predictions. This envelope will
produce strong derivatives to increase the reservations (while
the gaussian CCDF will have a smaller -but still negative-
slope). Hereinafter, we simplify the notation to Ft(x

t
i), to

describe FEt
i
(xti). We further note that, 0 ≤ FEt

i
(xti) ≤ F ,

where F is a constant and that there exists a constant G ≥ Gti.

B. Predictor Queue

Intuitively, we could use Ft(x
t
i) to take a good step in

slot t towards ensuring the time-average constraint, but this
information is not available in our model: the function Ft
relates to the choice of the adversary that takes place after
we commit our decision xt. What is available is the previous
value Ft−1(xt−1

i). Inspired by the work of Zinkevich [2],
we introduce a linear prediction of the violation probability
Ft(x

t
i):

bi(x
t
i) , Ft−1(xt−1

i) + F ′t−1(xt−1
i)(xti − xt−1

i), (3)

where F ′t−1(xt−1
i) denotes the derivative, hence bi(xti) is the

first order Taylor expansion of Ft−1 around xt−1
i evaluated at

xti. Note that only xti in Eq.(3) is to be determined at time t.

Definition 1 (Predictor Queue Vector). We define as Q the
Predictor Queue Vector. Every element of the vector is a virtual
queue for each resource, containing the sum of the predicted
probabilities of violation in the past iterations.

Qi(t+ 1) = [Qi(t)− εi + bi(x
t
i)]

+. (4)

Virtual queue Qi(t) is a counter that increases with our
controllable predictions bi(xti) and decreases at a steady rate
εi. If we limit the growth of Qi(t) to o(T), then the av-
erage (predicted) violations would only overshoot εi by an
amortizable amount, which can be manipulated into providing
asymptotic feasibility. In fact, we will rigorously prove this
intuition in section IV-B.

C. Drift Plus Penalty Plus Smoothness for Online Learning

Having obtained a handle on the time-average constraint
(and hence also asymptotic feasibility) via the predictor
queue, it remains to explain how xt is updated in THOR.
To combine the consideration of the cost and the predictor
queue we will use the technique of Drift Plus Penalty (DPP),
a framework used to solve constrained stochastic network
optimization problems [1]. In DPP, the tradeoff between the
constraints (queue lengths) and the cost is controlled via
the penalty parameter V. Specifically, first we consider the
quadratic Lyapunov drift (defined as ∆(t) = 1

2

∑
iQi(t +

1)2 − 1
2

∑
iQi(t)

2), which measures the impact of our policy
on the norm of the predictor queue vector. The drift can be
bounded as in Lemma 4.2 in [15],

∆(t) ≤ B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi],

where B = 1
2I(max{GD,F})2 is a constant. Then, adding to

both parts of the drift inequality the penalty term, defined as
the cost function multiplied by a weight V , we arrive at the
drift plus penalty inequality:

∆(t) + V C(x) ≤ B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(x). (5)

A large x tends to minimize the drift term ∆(t) but incurs
a high cost V C(x), while small x has the opposite effect.
Clearly, minimizing DPP achieves a balance between the two
conflicting objectives. Remarkably, prior work in DPP shows
that finding the minimizer of the upperbound in Eq.(5) at every
slot, eventually produces an online policy that simultaneously
achieves a cost within O(1

V) of the optimal and bounds the
queue with O(V).

Here, we will further add a quadratic (Tikhonov) regularizer
[16] centered at the previous iterate xt−1, this will encourage
the new reservation xt to not drastically change its value
compared to the last iteration xt−1.

Definition 2 (Drift Plus Penalty Plus Smoothness). By adding
the penalty term α||xt−xt−1||2 on both sides of the inequality
Eq.(5) we get the upper bound on Drift Plus Penalty Plus
Smoothness (DPPPS).

∆(t) + V C(xt) + α||xt − xt−1||2 ≤ (6)

B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(xt) + α||xt − xt−1||2.

also we define the upper bound as a function of x:

g(x) , B+

I∑
i=1

Qi(t)[bi(x
t
i)− εi]+V C(x) +α||x−xt−1||2.

to be used in the theoretical analysis later.

Asymptotically the effect of the regularizer fades, so the
optimality results are unaffected. While, however, the original
DPP yields online policies that constantly operate at two

extremes (called bang-bang policies), with this regularizer
THOR update is transformed to a smooth gradient step, as
we show next.

D. Online Reservation Policy

Proposition 1 (THOR minimizes DPPPS bound). The updates

xti =

[
xt−1
i − 1

2α
(V ci +Qi(t)F

′
t−1(xt−1

i))

]+

. (7)

minimize at each slot t the upper bound on the predicted
DPPPS Eq.(6).

Proof. The function g(x), found in Def. 2, is decomposable
to the I resources and the minimizer of each component is:

xti = argmin
xi≥0

{g(x)}

= argmin
xi≥0

{Qi(t)F ′t−1(xt−1
i)xi + V cixi + α(xi − xt−1

i)2}.

From this expression, it becomes apparent that, by removing
the regularizer (α = 0), since F is a quantile function and F ′

is negative, we get the following:

xti =

{
0, if V ci ≥ |Qi(t)F ′t−1(xt−1

i)|
+∞, otherwise.

This generates a bang-bang reservation policy for every time
slot t. Bang-bang policies are ideal for scheduling or rout-
ing, but are not practical for a cloud resource reservation
environment. Here, we must maintain as stable reservations
as possible, allowing slow installation or removal of servers
and resources. Meanwhile, with the added regularizer, the
reservation update is a gradient minimization step with step
size 1

2α . This comes naturally by finding the stationary point:

Qi(t)F
′
t−1(xt−1

i) + V ci + 2αxi − 2αxt−1
i = 0

xi =

[
xt−1
i − 1

2α
(V ci +Qi(t)F

′
t−1(xt−1

i))

]+

.

In conclusion the evolution of THOR policy can be described
as follows:

Time Horizon Online Reservations (THOR)

Initializition: Predictor queue initial length Q(1) = 0, initial
reservation vector x0 ∈ RI+.
Parameters: penalty constant V , step size α, cost of resource
unit ci, constraint requirement per resource εi ≤ 0.5.
Updates at every time slot t ∈ {1, . . . , T}:

xti =
[
xt−1
i − 1

2α (V ci +Qi(t)F
′
t−1(xt−1

i)
]+
, (8)

Qi(t+ 1) = [Qi(t) + bi(x
t
i)− εi]+. (9)

Where bi(xti) is given in Eq.(3) and F ′t (x
t
i) is the derivative

of the convexified CCDF FEt
i
.

In the following section we will use the above-explained
intuition to establish rigorous proofs that our THOR algorithm
is asymptotically feasible and has ”no regret” against the K

benchmark. These results are harder to achieve than those from
the standard DPP framework, because we have no knowledge
of the current status of the queue (Ft(xti)) and also the
average violations (arrivals to the virtual queue) are arbitrarily
distributed (selected by a constrained adversary), hence there
are no Markovian statistics to be learned.

IV. PERFORMANCE ANALYSIS

In this section we prove that THOR is a feasible policy with
no regret against K-slot policies. First we will show a general
upper bound on THOR DPPPS by using the strong convexity
property of g(x). Then we will use this general bound to
achieve a sublinear in time bound on the predictor queues
of THOR, which will be used to prove feasibility, i.e. no time
average constraint violation in a time horizon T . Finally, we
compare THOR with a K benchmark, using the K benchmark
properties, to prove the THOR’s no regret. The results are
summarized in a corollary at the end of the section.

We note that since xt by Eq.(7) is the minimizer of the
upper bound on DPPPS (Eq.(6)) for every time slot t; any
static reservation y ∈ RI+ bounds THOR’s DPPPS by above.
This is an important aspect for the analysis to follow.

B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(xt) + α||xt − xt−1||2 ≤

B +

I∑
i=1

Qi(t)[bi(yi)− εi] + V C(y) + α||y − xt−1||2.

A stronger condition is required in our analysis, a more refined
upper bound which is achieved due to the imposed strong
convexity of the Tikhonov regularizer. The following lemma
is a key lemma for our results.

Lemma 1. [Strong Convexity Bound] Let y ∈ RI+ be a static
reservation, then the DPPPS of THOR xt is bounded by:

∆(t) + V C(xt) + α||xt − xt−1||2 ≤ B + V C(y)+
I∑
i=1

Qi(t)[Ft(yi)− εi] + α||y − xt−1||2 − α||y − xt||2.

Proof. Due to g(x) being 2α-strongly convex, we have
g(xmin) = g(y) − 2α

2 ||y − xmin||
2, for all y ∈ RI+ static

policies. This refines THOR’s upper bound:

∆(t) + V C(xt) + α||xt − xt−1||2 ≤

B +

I∑
i=1

Qi(t)[bi(x
t
i)− εi] + V C(xt) + α||x− xt−1||2 ≤

B +

I∑
i=1

Qi(t)[bi(yi)− εi] + V C(y)+

α||y − xt−1||2 − α||y − xt||2
(1)

≤

B +

I∑
i=1

Qi(t)[Ft(yi)− εi] + V C(y)+

α||y − xt−1||2 − α||y − xt||2.

For (1) we use the convexity of the envelope CCDF function
FEt

i
, Ft(yi) ≥ bi(yi).

A. Predictor Queue Upper Bound

The first important step is to prove that under our policy
Eq.(8)-(9) the predictor virtual queues increase sublinearly
with time. This will later give us a bound for the constraint
violation which ensures THOR policy’s feasibility.

Lemma 2 (Upper Bound on Predictor Queues). Let D be
a finite upper bound on the maximum reservation, such that
xi ≤ xmax = D. The queue predictor vector Q at time slot T
satisfies the following inequalities:

||Q(T + 1)||2 ≤

√√√√2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2,

||Q(T + 1)||1 ≤
√
I||Q(T + 1)||2,

where ri(εi) , µi + σiQ−1(εi).

Proof. We will use Lemma 1, to prove that a static reservation
ȳ achieves sublinear growth in T of the Q vector. Then,
since our policy xti is the minimizer of the DPPPS, our policy
achieves (at least) the same upper bound. Select ȳ to be a
static reservation that always satisfies the constraint FΛt

i
(ȳi) ≤

εi, ∀i, t. It is easy to show that ȳi ≥ µi + σiQ−1(εi), where
Q is the quantile function of the standard normal distribution.
We take ȳi = µi + σiQ−1(εi), which gives the cost:

C(ȳ) =

I∑
i=1

ci(µi + σiQ−1(εi)) =

I∑
i=1

ciri(εi).

According to Lem.1:

∆(t) + V C(xt) + α||xt − xt−1||2︸ ︷︷ ︸
(a)

≤ B + V C(ȳ)+

I∑
i=1

Qi(t)[FEt
i
(ȳi)− εi]︸ ︷︷ ︸

(b)

+α||ȳ − xt−1||2 − α||ȳ − xt||2.

Here, terms (a) and (b) can be discarded. (a) is positive, while
(b) is negative, due to FEt

i
(ȳi) ≤ εi,∀i, t. This leaves us with:

∆(t) ≤ B + V C(ȳ) + α||ȳ − xt−1||2 − α||ȳ − xt||2.

We take the telescopic sum over the time slots {1, ..., T}:
T∑
t=1

∆(t) ≤ BT + V C(ȳ)T+

α

T∑
t=1

||ȳ − xt−1||2 − α
T∑
t=1

||ȳ − xt||2.

By taking the telescopic sum the intermediate terms of (i) the
quadratic Lyapunov drift ∆(t) and (ii) the norms cancel each
other. Furthermore, Q(1) = 0 and the (negative) norm term

−α||ȳ − xT ||2 can be dropped. We replace V C(ȳ) with its
cost and we arrive at:

1

2

I∑
i=1

Qi(T + 1)2 ≤ V T
I∑
i=1

ciri(εi) +BT + α||ȳ − x0||2.

Since xi ≤ xmax = D, then ||x− y|| ≤
√
ID, ∀y,x ∈ RI+.

I∑
i=1

Qi(T + 1)2 ≤ 2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2

||Q(T + 1)||2 ≤

√√√√2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2.

The result for the bound on the 1-norm follows by using the
norm inequality ||x||1 ≤

√
I||x||2, for I vector elements.

B. Constraint Residual

Having established a bound on Q, our next objective is
to use it to bound the constraint violations at time slot T and
obtain asymptotic feasibility. For simplicity, hereon we denote

QB(T + 1) ,

√√√√2BT + 2V T

I∑
i=1

ciri(εi) + 2αID2.

Theorem 1 (Upper Bound on Constraint Violation). The
constraint violation for each resource is bounded by the size
of the predictor queue at time T + 1, Qi(T + 1), which is
upper bounded by QB(T + 1):

T−1∑
t=0

Ft(x
t
i)− εiT ≤ QB(T + 1) +

G2
√

2BT (T + 1)

4α
,

where G ≥ |Gti| is the upper bound of the absolute value of
the derivative of the quantile function F defined in Sect.III-A.

Proof. We take the predictor queue update equation Eq.(4):

Qi(t+ 1) = [Qi(t) + bi(x
t
i)− εi]+ ≥ Qi(t) + bi(x

t
i)− εi

≥ Qi(t) + Ft−1(xt−1
i)−G(xti − xt−1

i)− εi,

We have by projection properties and by the queue update
policy Eq.(7) that ||xti − x

t−1
i ||1 ≤

||V ci−Qi(t)G||1
2α ≤ GQi(t)

2α :

Ft−1(xt−1
i)− εi ≤ Qi(t+ 1)−Qi(t) +

G2Qi(t)

2α
.

We sum for the time slots t = {1, ..., T}:
T∑
t=1

Ft−1(xt−1
i)− εiT ≤ Qi(T + 1) +

G2
∑T
t=1Qi(t)

2α
.

We have Qi(t+ 1) ≤ Qi(t) + ||bi(xti)− εi||1 ≤ Qi(t) +
√

2B,
hence Q(t) ≤ t

√
2B, ∀t and Qi(T + 1) ≤ QB(T + 1). Using

those on the above equation we get:
T−1∑
t=0

Ft(x
t
i)− εiT ≤ QB(T + 1) +

G2
∑T
t=1 t
√

2B

2α
.

The result follows.

By properly selecting the constants V, α and for growing
T the residual of the constraint on average goes to zero. In
the next subsection, we will show that our policy guarantees
similar cost against the K-Slot best static policy.

C. No Regret Against the K Benchmark Policy

Here, we will prove that our policy achieves no regret
against K-slot benchmark policy, these are defined in Sect. II
by Eq.(2). We start by the upper bound on DPPPS by Lem.(1),
we prove a small technical lemma to be able to use the
properties of the K slot benchmark; enabling us to upper
bound THOR’s performance in comparison to the benchmark.

Theorem 2 (Upper Bound Against K Benchmark). Regret,
against the optimal static policy inRI+ that achieves feasibility
in K slots, is upper bounded by:

T∑
t=1

C(xt)−
T∑
t=1

C(x?) ≤

BKT

V
+
αID2

V
+
IB(K + 1)(2K + 1)

6V
+ IDci(K − 1).

Proof. We begin by Lem.(1), by setting y = x∗(K) and
summing the inequality for K slots, t = {1, 2, . . . ,K}:

K−1∑
τ=0

[
∆(t+ τ) + V C(xt+τ) + α||xt+τ − xt+τ−1||2︸ ︷︷ ︸

(a)

]
≤

BK + V

K−1∑
τ=0

C(y) +

K−1∑
τ=0

I∑
i=1

Qi(t+ τ)[Ft+τ (yi)− εi]︸ ︷︷ ︸
(b)

+

α

K−1∑
τ=0

||y − xt+τ−1||2 − α
K−1∑
τ=0

||y − xt+τ ||2. (10)

Lemma 3. For policy y = x∗(K), for any t ∈ {1, . . . , T}:

K−1∑
τ=0

I∑
i=1

Qi(t+ τ)[Ft(yi)− εi] ≤ IBK(K − 1).

Proof. We give a lower bound for Q(t+K) for any K ≥ 1:

Qi(t+K) ≥ Qi(t) +

K−1∑
τ=0

[Ft+τ (yi)− εi], (11)

and an upper bound:

Qi(t+K) ≤ Qi(t) +

K−1∑
τ=0

||Ft+τ (yi)− εi||1. (12)

Next, we use these bounds of the queue derived above, so that
Qi(t) appears as a common term in the sum. We will prove

for a single Queue qi(t). We denote max{0, f(·)} , [f(·)]+
and min{0, f(·)} , [f(·)]−:

K−1∑
τ=0

Qi(t+ τ)[Ft+τ (yi)− εi] =

K−1∑
τ=0

Qi(t+ τ)
{

[Ft+τ (yi)− εi]+ + [Ft+τ (yi)− εi]−
} (a)

≤

K−1∑
τ=0

Qi(t) +

τ−1∑
j=0

||Ft+j(yi)− εi||1

 [Ft+τ (yi)− εi]++

K−1∑
τ=0

Qi(t) +

τ−1∑
j=0

[Ft+j(yi)− εi]

 [Ft+τ (yi)− εi]−
(b)

≤

Qi(t)

K−1∑
τ=0

{[Ft+τ (yi)− εi]+ + [Ft+τ (yi)− εi]−}+

K−1∑
τ=0

τ−1∑
j=0

||Ft+j(yi)− εi||1

 [Ft+τ (yi)− εi)]++

K−1∑
τ=0

τ−1∑
j=0

[Ft+j(yi)− εi]

 [Ft+τ (yi)− εi]−
(c)

≤

Qi(t)

K−1∑
τ=0

[Ft+τ (yi)− εi]+

K−1∑
τ=0

τ−1∑
j=0

||Fj+τ (yi)− εi||1

 ||Ft+τ (yi)− εi||1
(d)

≤

Qi(t)

K−1∑
τ=0

[Ft+τ (yi)− εi] + 2B

K−1∑
τ=0

τ−1∑
j=0

1 ≤

Qi(t)

K−1∑
τ=0

[Ft+τ (yi)− εi] +BK(K − 1) ≤ BK(K − 1).

For (a) we take the upper bound for queue on the positive
terms (Eq.(12)) and the lower bound on the queue for the
negative terms (Eq.(11)), this gives an upper bound on the
total. In (b) we rewrite the equation by bringing in the front the
common Q(t) terms. Next, at (c) we upper bound the non-Q(t)
terms with their norm and we pass the norm to every element.
Finally, (d) follows by taking the upper bound ||Ft(yi)||1 ≤√

2B. Summing for I queues proves the lemma.

We take Eq.10, where we drop (a) and replace (b) by
Lem.(3). We sum the inequality for t = {1, 2, . . . , T −K}:
K−1∑
τ=0

T−K∑
t=1

∆(t+ τ)︸ ︷︷ ︸
(c)

+V

K−1∑
τ=0

T−K∑
t=1

[
C(xt+τ))− C(y)

]
︸ ︷︷ ︸

(d)

≤

BK2T + α

K−1∑
τ=0

T−K∑
t=1

||y − xt−1||2 − α
K−1∑
τ=0

T−K∑
t=1

||y − xt||2︸ ︷︷ ︸
(e)

.

To continue with the proof we need to lower bound the
negative terms of the drift expression (c):

K−1∑
τ=0

T−K∑
t=1

∆(t+ τ) =
1

2

K−1∑
τ=0

Q(T −K + τ + 1)2−

1

2

K−1∑
τ=0

Q(τ + 1)2 ≥ −1

2

K−1∑
τ=0

Q(τ + 1)2 ≥

− 1

2

K−1∑
τ=0

((τ + 1)
√

2B)2 ≥ −BK(K + 1)(2K + 1)

6
.

The term (e) is bounded by (e) ≤ αID2K, this is easy to
show by the cancellation of the terms of the telescopic sum
and by dropping the negative terms, it is omitted due to space
limitation. Finally, to complete the sum of regret K times we
need to add and subtract terms in (d):

K−1∑
τ=0

T−K∑
t=1

[
C(xt+τ))− C(y)

]
= K

T∑
t=1

[
C(xt))− C(y)

]
−

K−1∑
τ=0

τ∑
t=1

[
C(xt))− C(y)

]
−
K−1∑
τ=0

T∑
t=T−K+τ+1

[
C(xt))− C(y)

]
≥

K

T∑
t=1

[
C(xt))− C(y)

]
−DIciK(K − 1).

where D is the max reservation, hence IKciD is the cost of
assigning the maximum reservation for K iterations at all the
I resources. By combining the results for (c),(d) and (e) and
dividing by V and K we finish the proof of the lemma.

In the next subsection, we give a corollary that summarizes
the performance guarantees of THOR, utilizing the results of
Th.(1) and Th.(2).

D. THOR has No Regret and is Feasible

The following corollary, combines the theoretical results of
the previous subsections to prove the performance guarantees
of THOR.

Corollary 1 (No Regret against K = o(T)). Fix ε > 0, setting

α = T
3
2

V
1
2

and taking K = T 1−ε and V = T 1− ε
2 , THOR has

no regret and is feasible:

RK(T) = O
(
T 1− ε

2

)
,

Ctr(T) = O
(
T 1− ε

4

)
.

Proof. We substitute in the expressions of Th.(1) and Th.(2)
the values of α,K and V . Dropping the dominated terms
completes the proof.

We have proven that using THOR reservations we achieve
”no regret” against any K benchmark policy that has K =
o(T). This is an important finding that bridges the gap between
[13], which proves ”no regret” against K = 1 benchmark and
[12], which proves that ”no regret” is impossible against T
benchmark, with adversarial time varying constraints.

V. NUMERICAL EVALUATION

A. Google Cluster Data Analysis

In this subsection we compare the performance of our
algorithm against an implementation of Follow The Leader
(FTL), decribed in [7] and against the oracle best T slot
reservation. The comparison is run on a public dataset from
Google [14], [17]. The dataset contains detailed information
about (i) measurements of actual usage of resources (ii) request
for resources (iii) constraints of placing the resources in a
big cluster comprised by 12500 machines. We will use the
measurement of the actual usage of resources aggregated over
the cluster. The time granularity of the measurements is 5
minutes for the period of 29 days and it is visualized in Fig. 1.

In Fig. 3 colored light gray is the time evolution of the
workload demand sample path of the aggregate CPU (in
subfig. 3a) and memory resources (in subfig. 3b). The blue
line is THOR reservations, the red is the static oracle T -slot
reservation and with dotted green the FTL reservations. In
this experiment, εi is selected to be 10%. We see that for
both resources, THOR predicts the resource reservation or
quickly reacts to changes. On the other hand FTL is late to
adapt, especially in the CPU case, causing many violations. In
Table III, the above are expressed in numbers, THOR achieves
significantly reduced violations while also achieving the lowest
cost (∼ 10%) less than the best static T -slot policy.

We run the same experiment, for a range of εi from very
loose to very conservative violation guarantees. The numerical
results are found in Tables I and II. The result shows that
THOR always achieves the violation guarantee, but also that as
the constraint gets stricter, THOR is becoming more protective
than necessary. This is most probably due to overestimation
of the Λ distribution that caps the adversary decisions in

TABLE I
CPU PERFORMANCE COMPARISON TABLE ACCORDING TO GUARANTEE

Guarantee 25% 20% 5% 1% 0.5%

T-Slot Vio 25.00 20.00 5.00 1.00 0.05

FTL Vio 36.28 31.29 13.63 5.41 3.57

THOR Vio 21.37 15.38 0.5 0 0

T-Slot Cost 2984 3124 4312 4682 4752

FTL Cost 2816 2896 3418 3740 3799

THOR Cost 3013 3193 3786 4238 4412

TABLE II
MEMORY PERFORMANCE COMPARISON TABLE ACCORDING TO

GUARANTEE

Guarantee 25% 20% 5% 1% 0.5%

T-Slot Vio 25.00 20.00 5.00 1.00 0.05

FTL Vio 26.38 21.43 6.94 2.61 1.64

THOR Vio 16.38 10.95 0.4 0 0

T-Slot Cost 2943 2970 3096 3189 3225

FTL Cost 2937 2962 3071 3129 3159

THOR Cost 2968 3006 3181 3258 3293

0 1000 2000 3000 4000 5000 6000 7000 8000
Measurements

0

1000

2000

3000

4000

5000

6000
C

P
U

 R
es

ou
rc

es
Sample Path
Oracle T-Slot
THOR
FTL

(a) CPU Reservations

0 1000 2000 3000 4000 5000 6000 7000 8000
Measurements

1000

1500

2000

2500

3000

3500

4000

4500

M
em

or
y

R
es

ou
rc

es

Sample Path
Oracle T-slot
THOR
FTL

(b) Memory Reservations

Fig. 3. Comparison Plots of reservation updates for different policies. Light gray on the background is the sample path of the actual resources required at the
server. From the subfigures we can see that in the non-stationary case of CPU resource requirement, FTL policy is lagging significantly in resource reservation,
incurring many more violations than the maximum 10%. For memory we can see that FTL is similar to the best static, while our algorithm achieves better
performance by tracking the fluctuations. See Table III for the numerical comparison.

TABLE III
POLICY COMPARISON TABLE, ε = 10%

Performance T-slot Oracle FTL THOR

Average CPU Cost 3964 3203 3365

Average Violations (%) 10.00 21.41 5.64

Average MEM cost 3041 3054 3027

Average Violations (%) 10.00 11.84 3.7

theory, which is estimated by random sampling of max values.
Furthermore, FTL again struggles to achieve the constraint in
the whole range of guarantees, with slightly better performance
in memory reservation. Even though THOR is more protective
than necessary cost wise the performance is very similar to the
best T -slot static policy, with the maximum difference to be
less than 4% for very loose guarantee and actually achieving
better performance on the tough CPU reservation, especially
as the guarantee gets stronger.

VI. CONCLUSION

In this paper we introduce THOR, an online resource
reservation policy for clouds. Cloud environments are very
challenging due to volatile and unpredictable workloads.
THOR uses (i) predictor queues and (ii) drift plus penalty plus
smoothness, to fine tune reservations, such that overprovision-
ing is minimized while underprovisioning is maintained below
a guaranteed εi parameter chosen by the system administrator.
We prove that THOR is feasible in a growing horizon T and
that it achieves similar performance to any sublinear to T ,
K-slot oracle static reservation. In simulation results using a
public dataset from Google cluster, we vastly outperform the
heavy to implement in practice follow the leader algorithm
and perform similarly to the T -slot oracle policy.

REFERENCES

[1] M. J. Neely, “Stochastic Network Optimization with Application to
Communication and Queueing Systems,” Synthesis Lectures on Com-
munication Networks, 2010.

[2] M. Zinkevich, “Online Convex Programming and Generalized Infinites-
imal Gradient Ascent,” ser. ICML, 2003.

[3] R. B. Q. Zhang, M. F. Zhani and J. L. Hellerstein, “Dynamic
Heterogeneity-Aware Resource Provisioning in the Cloud,” IEEE Trans-
actions on Cloud Computing, Jan 2014.

[4] “How AWS Pricing Works,” Amazon, 2018. [Online]. Available:
https://aws.amazon.com/whitepapers/

[5] N. C. Petruzzi and M. Dada, “Pricing and the Newsvendor Problem: A
Review with Extensions,” Operations research, 1999.

[6] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis,” in ACM Symposium on Cloud Computing (SoCC), San Jose,
CA, USA, Oct. 2012.

[7] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization,”
Foundations and Trends R© in Machine Learning, 2012.

[8] R. N. Elena Veronica Belmega, Panayotis Mertikopoulos and
L. Sanguinetti, “Online Convex Optimization and No-Regret Learning:
Algorithms, Guarantees and Applications,” 2018. [Online]. Available:
http://arxiv.org/abs/1804.04529

[9] M. Mahdavi, R. Jin, and T. Yang, “Trading Regret for Efficiency: Online
Convex Optimization with Long Term Constraints,” Journal of Machine
Learning Research, 2012.

[10] R. Jenatton, J. Huang, and C. Archambeau, “Adaptive Algorithms
for Online Convex Optimization with Long-Term Constraints,” arXiv
preprint arXiv:1512.07422, 2015.

[11] J. D. Abernethy, E. Hazan, and A. Rakhlin, “Interior-Point Methods for
Full-Information and Bandit Online Learning,” IEEE Transactions on
Information Theory, 2012.

[12] S. Mannor, J. N. Tsitsiklis, and J. Y. Yu, “Online Learning with Sample
Path Constraints,” Journal of Machine Learning Research, 2009.

[13] M. J. Neely and H. Yu, “Online Convex Optimization with Time-
Varying Constraints,” arXiv preprint arXiv:1702.04783, 2017.

[14] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google Cluster-Usage
Traces: Format + Schema,” Google Inc., Mountain View, CA, USA,
Technical Report, Nov. 2011, revised 2014-11-17 for version 2.1. Posted
at https://github.com/google/cluster-data.

[15] M. J. N. Leonidas Georgiadis and L. Tassiulas, “Resource Allocation and
Cross-Layer Control in Wireless Networks,” Foundations and Trends R©
in Networking, 2006.

[16] N. Parikh, S. Boyd et al., “Proximal Algorithms,” Foundations and
Trends R© in Optimization, 2014.

[17] J. Wilkes, “More Google Cluster Data,” Google Research Blog, Nov.
2011.

