
Queueing Systems manuscript No.
(will be inserted by the editor)

Scheduling with pairwise XORing of packets under
statistical overhearing information and feedback

Georgios S. Paschos · Leonidas Georgiadis ·
Leandros Tassiulas

the date of receipt and acceptance should be inserted later

Abstract We study the problem of scheduling packets from several flows travers-
ing a given node which can mix packets belonging to different flows. Practical
wireless network coding solutions depend on knowledge of overhearing events
which is obtained either by acknowledgments or statistically. In the latter case, the
knowledge about each packet improves progressively with feedback from the trans-
missions. We propose a virtual network mechanism in order to characterize the
throughput region of such a system for the case where we allow only pairwise XOR-
ing. We also provide the policy which achieves the stability region and compare
it to simple heuristics. The derived policy is a modification of the standard back-
pressure policy, designed to take into account the fact that in the proposed virtual
network the destination of a transmitted packet is known only probabilistically.
We demonstrate simulation results according to which scheduling with statisti-
cal information can provide significant throughput benefits even for overhearing
probabilities as small as 0.6.

1 Introduction

Network coding (NC) has emerged as one of the most promising techniques in the
effort to improve network performance [3,16,9]; NC has been theoretically shown
to achieve the multicast capacity of wireless networks [3]. The capacity boost due
to NC has been shown even in simple scenarios with wireless network coding, where
an encoded packet travels at most 1 hop [16,24]. In [16], the authors proposed

G. S. Paschos and L. Tassiulas are with University of Thessaly, E-mail: gpasxos@gmail.com,
leandros@uth.gr · L. Georgiadis is with Aristotle University of Thessaloniki, E-mail:
leonid@auth.gr
The authors are with CERTH-ITI as well. Their work was supported by European Commission
FP7 STAMINA-265496 and Marie Curie CodeLance-285969 research projects.
A preliminary version of this work was published in [22] which mainly summarized the prob-
lem and the results focused on the network coding scenario. Additionally to providing proofs,
the current extended version also contains several examples as well as a general version of
the virtual network approach which can be used in other application scenarios as well. The
complete version of the current paper is available online at the Queueing Systems Journal
www.springer.com.

2 Paschos, Georgiadis and Tassiulas

R
B

A

C

fAB

fBC

Fig. 1 Opportunistic listening; When Alice uploads her packet destined to Bob, Chloe over-
hears the transmission and stores the packet as a key. Later, the relay node may mix the flows
fAB and fBC successfully. Bob decodes due to ownership and Chloe due to overhearing.

COPE, the first experimental evidence of throughput gain via wireless NC with
XOR operations.

The strength of XOR operations lies in the simplicity of the decoding func-
tionality. Given that N − 1 out of N coded packets are known to a receiver, the
application of an XOR operation will provide the N th packet. We call these N − 1
packets keys for this particular receiver. The theoretical gain of wireless NC in the
simple Alice–Relay–Bob topology [16] is 4

3 , since instead of using four transmis-
sions to serve the symmetric flows (two flows i, j are called symmetric if the source
of i is the destination of j and vice versa), only three are sufficient. The maximum
possible theoretical gain harvested in one network junction is 2 and it arises in the
so-called infinite wheel topology, see [16]. Similar gains have been reported in the
case of applying intersession NC at each node of a long path, see [5,25], while the
combination of local coding and intersession coding over long paths may poten-
tially reach higher throughput gains as explained in [12]. In this paper, we focus
on local coding; the coded packets are decoded one hop away from the encoding
node.

The actual throughput gain in a practical scenario varies greatly with the
topology, the transmission rates and the probability of an erroneous transmission
due to fading or interference on the wireless link. Nevertheless, wireless network
coding is deemed a promising technique for increasing the throughput of wireless
links since the provided gains aggregate throughout the whole network and they
can be implemented without affecting the operation of the rest of the protocol
stack.

In order to increase the efficiency of the wireless NC scheme, COPE utilizes
opportunistic listening, see Figure 1. This technique is a smart way of exploiting the
broadcast medium; first devices need to store copies of all native packets that they
overhear from the common medium. Second, routers need to be informed of the
key packets that each neighboring receiver maintains, towards making encoding
decisions. As a result, this extra functionality enables encoding of packets belong-
ing to non-symmetric flows and thus extends the throughput benefits to wider
topologies and flow scenarios. Obtaining this overhearing information at the deci-
sion point (relay node) is not a trivial task though. The first approach is to deal
with this issue by explicitly acknowledging all overheard packets, a policy reported

Scheduling with pairwise XORing 3

by the authors of [16] to be sluggish and costly as the channel rate and number of
neighbors increases.

As an alternative lightweight approach, [16] proposes obtaining statistical in-
formation about the overhearing events. The packet overhearing information is
guessed by routers, by utilizing link quality advertisements through periodic prob-
ing. This is a feature automatically provided by SRCR routing protocol [1] that
most of practical NC implementations are built on, e.g. [16,23,24,4]. Avoiding
monitoring each overhearing event is experimentally shown to relieve router CPU
of a heavy burden, [16]. This comes of course at a loss of throughput; the set
of arrival rates stabilizable by the system with deterministic knowledge but not
stabilizable with only statistical knowledge is called regret region (the scheduler
regrets not having deterministic state information). In this paper, we are interested
to quantify this loss.

In this paper, we focus on wireless NC and study the problem of scheduling
packets and making encoding decisions jointly. Driven by the applicative nature of
scheduling of XORs with statistical overhearing information, we make the following
contribution:

– We formulate the problem of joint scheduling and encoding selection taking
into account two distinct cases:

1. the relay has deterministic information about all key owners,
2. the relay only has statistical overhearing information and utilizes feedback

from the transmissions.

– For the deterministic case:
– We give the throughput optimal (stabilizing) policy for the case of F flows

and XORing only pairs of packets. The policy is of backpressure type, and is
derived based on the standard framework leading to such types of policies.

– We discuss the extension to coding arbitrarily many packets.
– For the statistical case:

– We propose a virtual network technique which categorizes the packets based
on the belief of the scheduler about the key owners.

– Using this virtual network, we characterize the throughput region of the
system in the case of F flows and allowing for pairwise encoding (i.e. en-
coding up to two packets).

– We provide the throughput optimal policy for this case. The policy is of
backpressure type again, applied on the virtual network. There is an im-
portant difference from the classical framework, however, the destination of

a transmitted packet is random and uncontrollable. We rigorously deal with
this technical issue and determine the resulting backpressure policy.

– We perform simulations with different settings showing the throughput benefits
obtained from scheduling with statistical information.

The rest of the paper is organized as follows. In Section 2 we discuss previous
work. In Section 3 we describe in length the NC scheme and the system model
we deal with. We also provide further motivation for our work. Next, in Section
4, we formulate the problem stating also some basic definitions. In Section 5 we
deal with the problem in case of deterministic overhearing information and in
Section 6 in case of statistical overhearing information and feedback. In Section 7
we provide simulations and we conclude our work in Section 8. Appendices I and
II provide the mathematical proofs while Appendix III extends the applicability

4 Paschos, Georgiadis and Tassiulas

of the algorithm to cases where the decisions involve transmissions with multiple
packets. Also, Appendix IV, explains why coding more than pairs, i.e. for |P| > 2,
requires the development of further techniques.

2 Related Previous Work

In this Section, we discuss previous studies on wireless NC, and differentiate our
work. Our work is based on the practical system of [16], named COPE. The au-
thors of [16] implemented a wireless network coding scheme which allows both
for deterministic and statistical overhearing knowledge. However, [16] does not
consider the problem of scheduling and utilizes a simple heuristic mechanism for
treating the statistical case, explained in detail in Section 7. In this work, we plan
to extend the treatment of the statistical case and solve the problem of making
encoding decisions and performing scheduling jointly.

Apart from [16], there exist other practical approaches that try to enable
beyond-COPE practices in real systems using XOR operations. CLONE for exam-
ple deals with lossy links and relaxes the constraint of immediate decoding. The
authors show that even for the binary NC the problem of determining the opti-
mal encoding sequence is #P–complete, [23]. In this process, it is assumed that
encoded packets may be stored at receivers. In ER, [24], the authors consider the
problem of selecting the set of packets to code together towards minimizing the
number of retransmissions and show that it is NP–hard. This result can be par-
allelized to the work in the context of index coding where we are given a number
of information bits partially known by the receivers and we search for the trans-
mission policy that minimizes the time to complete reception by all receivers, [7].
All these approaches assume that the scheduler/encoder (or the entity that makes
the transmission decisions) has deterministic knowledge of which packets (keys)
each destination has. Our work builds on top of the stochastic approach proposed
in [16] and addresses the problem of making encoding decisions based solely on
statistical information. There are several practical advantages of the latter, such as
reduced overhead, reduced latency in decision making and smooth scheduler oper-
ation. More importantly, [16] advises that operation in high channel rates (6Mbps
in that case) mandates the use of statistical information only.

The authors in [5] observe that NC should be carried out jointly with schedul-
ing (otherwise NC may reduce throughput). Then, they propose a simple practical
scheme, XOR-SYM which allows XOR coding of symmetric flows only and disre-
gards opportunistic listening. Our work is in line with [5], with the difference that
we focus on a single hop case that utilizes opportunistic listening. With symmetric
flows as in [5], knowledge of overhearing events is not required and the scheduling
problem is simpler since feedback does not affect the decisions.

There exist other works dealing with scheduling in network coding-enabled
networks as well, see for example [8,13,14]. A common characteristic of those
dynamic strategies with our work is that they do not require arrival rates as input.
The on-line system is robust to dynamics because it reacts to present circumstances
using the state of the queues. The difference in our work, lies on the fact that
contrary to these works, we do not assume complete knowledge for the system.
Instead, we assume that the scheduler possesses only statistical information about
the overhearing events, i.e. which destination holds which keys.

Scheduling with pairwise XORing 5

Scheduling in systems with uncertainty and feedback is a topic of recent in-
terest, [6,10]. In these previous works it is stressed that in the general case, such
problems are well modeled by Markov decision processes which however are of-
ten intractable to solve. In our work, we make a connection between scheduling
problems with feedback and the control theory of [11] which results in feasible
algorithms for solving such problems optimally.

The problem of scheduling packets, when only partial network state informa-
tion (NSI) is available, is studied in [28,15]. From prior work, it is known that
delayed queue length information does not affect the throughput region, but de-
layed channel conditions for example can indeed diminish the throughput region.
In [28], the authors assume that the channel state evolves as a Markov chain which
leads to algorithms that optimally control the arising Markov decision process. The
structure of the chain is used in the calculations of the expected backpressure met-
ric. This work has some similarity with our work, in that it addresses the problem
of routing and scheduling in an environment where there is uncertainty. While,
however, in [28] the uncertainty regards the channel state and affects the number
of successfully transmitted packets under a given control, in our case uncertainty
regards the overhearing of packets; this latter uncertainty is reduced progressively
through the knowledge acquired by the received feedback, and the objective is to
use this knowledge efficiently. This motivates the introduction of virtual network
which captures the knowledge the scheduler has about the state of each packet.

Virtual queues have been used earlier in the context of handling complications
that may arise in network control, as well as addressing problems with performance
constraints. In [14], the concept of virtual queues is utilized in order to handle mul-
tiple copies of multicast packets. Problems involving performance constraints, e.g.,
upper bounds on node power consumption, have been solved by introducing virtual
queues in [21], [26]. The problem of sampling a random channel and scheduling
packets has been studied jointly in [19], where time average metrics are optimized
subject to stability and the satisfaction of time average penalty constraints. The
author proposes a virtual queue mechanism for capturing time average constraints
and a modified backpressure algorithm that provides the solution to the problem.
The approach considered in the current paper is differentiated from the previous
works in that it is based on the creation of a virtual network for capturing and
utilizing the knowledge obtained through feedback. The virtual network has the
property that the recipient of a transmitted message is (uncontrollably) random,
a case which is not captured by the existing framework nor encountered, to our
knowledge, in any work in the literature. Thus, apart from the main contribution,
which is the mapping of the problem to the virtual network, a technical contri-
bution that this paper offers is to modify the standard approach in order to solve
this added complexity.

3 Network Coding scheme description

We assume the existence of 2–hop flows traversing a central node and we write
i ∈ F = {1, 2, . . . , F} such that i : σi → R → δi where σi denotes the source node
of flow i, δi denotes its destination node and R is the central node called the relay.
The relay maintains a queue for each flow, call it ni for flow i and let Xi be its

6 Paschos, Georgiadis and Tassiulas

corresponding backlog. It also possesses a scheduler that makes packet encoding
and transmission decisions.

In the uplink phase, the flow sources transmit native packets towards the
relay, populating the corresponding queue backlog Xi there, see Figure 2. All
destination nodes, constantly listen to the common medium and overhear some of
the transmitted packets. Each node maintains an infinite buffer where it stores all
overheard native packets (as explained in the introduction, we assume that encoded
packets are not allowed to be stored). Also, each source node stores in its buffer the
transmitted packets since these packets can also be used for encoding/decoding.
As described above, the overhearing events take place during the uplink phase and
this is the main reason for describing this phase in detail. In the current work we
concentrate on the problem of scheduling in the downlink phase. Transmissions in
the uplink are considered to take place independently of the downlink through,
e.g., a time sharing mechanism.

We denote the packets of flow i arriving at the relay with P ik, where k = 1, 2, . . .
orders the packets based on arrival time (we may omit the subscript k when we
speak of an arbitrary packet). Each arriving packet P ik is associated with an over-

hearing state vector (we will use the term overhearing vector) sik that characterizes
the destinations that overheard this packet. Specifically, sik is a binary vector tak-
ing values in S = {0, 1}F with sik(j) = 1 indicating that node δj (the destination of
flow j) has (by overhearing or ownership) the packet P ik in its buffer and sik(j) = 0
indicating the complement. We assume that sik is random and the randomness is
stirred by channel fading, mobility or spatially differentiated collisions. Note here
that if for some flows i, j we have δi = δj then s`k(j) = s`k(i), ∀` ∈ F \ {i, j} since
the receiving node is physically the same for these two flows. In such cases, the
updates of the overhearing vector should occur simultaneously for the two flows
(why this is important will become apparent later).

Next we define two possible ways of conveying overhearing information to the
relay.

Deterministic information: each node announces the overhearing of each packet
to the relay by sending specific control packets. In this scheme (used by COPE,
CLONE, etc), the relay obtains deterministic information about key knowledge
at the expense of increased complexity. That is, the relay scheduler is assumed to
know deterministically sik for all flows i and all packets P ik in the system.

Statistical information: the relay obtains statistical information about the over-
hearing events through a mechanism that operates independently from the sched-
uler and at a larger time-scale. This scheme is used by COPE for high channel rates
and it is the focus of this paper. In this scheme, the relay does not know the over-
hearing vector s. Instead it initially knows the probability of the event sik(j) = 1
denoted as qij and collected in the overhearing probability matrix Q. Utilizing
feedback information, the relay may improve the knowledge about the state of a
packet each time a decoding failure occurs. As will be seen below, this implies
that the expected service rate obtained by serving a given queue is not constant,
a fact that gives opportunities for performance improvements but complicates the
scheduling decisions.

In the downlink phase, the relay may select a set of packets P chosen from
different flows, encode them in a single packet (perform per bit XOR) and transmit
the encoded packet at the minimum rate mini{rdown

i } where the minimization is

Scheduling with pairwise XORing 7

σ1

R

δj

δiPi Pj

σ2

σF

δ1

δ2

δF

uplink downlink

min{ridown,rjdown}

n1

n2

ni

nj

nF

λ1

λ2

λF

Fig. 2 Overview of our scheme; We study scheduling in the downlink but consider also the
overhearing events that take place in the uplink.

over the set of flows to which the packets in P belong. In this paper we limit
ourselves to the case where |P| ≤ 2. Thus in what follows, the available controls
of the relay scheduler are either to transmit a native packet or to apply the XOR
operator on two selected packets from different flows.

In the feedback phase, each intended destination δi attempts to decode the
encoded packet and obtain the corresponding P ik, and in case of success returns an
acknowledgment message (ACK). Once the ACK is received, the relay removes P ik
from queue ni which is now considered served. This is always true when the relay
transmits a native packet. In case of an encoded packet however, we have four
distinct cases which convey complete feedback information to the relay about the
overhearing events of the transmitted packets. More specifically, say we transmit
P ik1 ⊕ P

j
k2

, we have the following cases:

1. Both packets are ACKed in which case they both leave the system.
2. Packet P ik1 is ACKed and packet P jk2 is not ACKed. In this case, P ik1 leaves the

system and P jk2 stays in the system while the relay learns that δi owns P jk2 as a

key (i.e. learns that sjk2(i) = 1) and it may use this information in the future.

3. Packet P ik1 is not ACKed and packet P jk2 is ACKed. By symmetry, P ik1 stays

in the system and the relay learns that δj owns P ik1 as a key (i.e. learns that

sik1(j) = 1) and P jk2 leaves the system.
4. Both packets are not ACKed in which case they both stay in the system while

the relay learns that δj does not own P ik1 and δi does not own P jk2 (i.e. learns

that sik1(j) = sjk2(i) = 0).

Note that the feedback informs the relay of the true state of the two particular
packets P ik1 and P jk2 and not of any other packet belonging to the same flows.
Thus, after an encoded packet transmission, the relay learns the element of the
packet overhearing vector that corresponds to the pairing flow. However, if the
packet is destined to a node which happens to be the destination node of another
flow as well, the element that corresponds to this flow is learnt as well.

Here we summarize the assumptions of our model that affect the throughput
region of a general multihop network:

8 Paschos, Georgiadis and Tassiulas

qAD
r1r1

r1 r2

qBC

BA

D C

R

Fig. 3 An example network with two flows, A→R→C and B→R→D. D overhears A with
probability qAD and C overhears B with probability qBC.

1. We concentrate on the problem of single hop downlink scheduling.
2. Use XORs for combining packets (instead of more general operations, e.g. linear

combinations of packets, where each packet is considered as an element of a
finite field).

3. Terminals are not allowed to forward encoded packets (local NC), i.e. they
must decode immediately the packet and then encode it again if appropriate
at the next hop.

4. Terminals are not allowed to store encoded packets for future use; they only
store native packets.

5. Transmissions to intended recipients are errorless, however these transmissions
may be overheard by other nodes with certain probability.

Assumptions 2,3 have been widely used in prior system development and con-
tribute to making the network coding scheme easy to implement and maintain.
We plan to relax assumptions 1,4,5 in future work.

Next we provide further motivation for our approach.

3.1 Encoding decision motivation

Consider the simple network of Figure 3 where two flows exist, A→R→C and
B→ R →D. D overhears A with probability qAD and C overhears B with prob-
ability qBC and let qAD = 1, qBC = q, hence after transmission of an encoded
packet PAC ⊕ PBD, destination D always decodes packet PBD while destination
C may or may not decode packet PAC . Consider the downlink rates rdown

C
.
= r2

and rdown
D

.
= r1 and the uplink rates rupA = rupB

.
= r1, and assume equal arrival

rates λ1 = λ2 = λ 1. Under strategy 1: “Transmit only native packets” the
maximum λ achieved is 2r1r2

3r2+r1
while under strategy 2 “Transmit the encoded

packet PAC ⊕ PBD and retransmit as native all undecoded PAC packets” it is
2r1r2 min{r1,r2}

2r2 min{r1,r2}+r1r2+(1−q)r1 min{r1,r2} . By setting these two equal, the threshold qthr
is obtained, such that for q ≥ qthr NC is beneficial. Solving, we get

qthr =

{
0 r1 ≤ r2
r1−r2
r1

r1 > r2,

1 Here we have slightly changed the notation to make it more explanatory. Following the
initial notation we should have qAD ≡ q12, qBC ≡ q21, PAC ≡ P 1, PBD ≡ P 2, rupA ≡ rup1 ,

rupB ≡ r
up
2 , rdown

C ≡ rdown
2 , rdown

D ≡ rdown
1 .

Scheduling with pairwise XORing 9

indicating that the strategy “encode as many packets as possible” used in [16]
(where equal rates are assumed) is not optimal when r1 > r2. Also, a fixed thresh-
old policy is bound to fail in a variable rate scenario. The phenomenon becomes
non-trivial to visualize and solve if one considers several flows with some of them
having common sources or destinations.

3.2 Scheduling with feedback motivation

To see the impact of feedback, consider the cross topology of Figure 3 with qAD +
qBC ≥ 1 and qAD < 1, qBC < 1 and r1 = r2. Assume the use of a reasonable
scheduling policy which selects the packet PAC ⊕ PBD iff qAD + qBC ≥ 1 and the
transmission of a native packet otherwise. This corresponds to using NC when the
expected decoding is at least one packet on the average. Now assume that we only
have two packets to send, one for each flow, and it happened that these packets
were both not overheard at uplink time. The scheduler, oblivious of this unhappy
occasion, will encode the two packets (since qAD + qBC ≥ 1) and transmit the
coded packet. In this case no ACK will be received since it is impossible for both
destinations to decode. A scheduler that disregards feedback information will keep
on sending the encoded combination of the same packets resulting in a deadlock.
Note, that we may let the above packets mix in the queues with other packets and
thus reduce the probability of a deadlock. However, the throughput will decrease
in any case. The reason this happens is because the scheduler actually has in its
possession new information which is not taken into account in future scheduling
decisions. Indeed, once no ACK messages were received, the scheduler can deduce
the information that none of the two packets is overheard. Then it should append
this information to the particular packets and treat them differently.

4 Problem Formulation

Consider the downlink of a network with F flows and F corresponding queues,
similar to the one in Figure 2. We consider a slotted system where the time unit
is the length of a slot. Slot τ = 1, 2... covers the time interval [τ − 1, τ]. During
slot τ , Ai(τ) packets of flow i arrive at the corresponding queue at the relay node
along with a randomly chosen overhearing vector sik for the kth arriving packet.
We assume that the process Ai(τ) consists of independent random variables with
rate E{Ai (τ)} = λi.

At the beginning of each slot, the scheduler located at the relay chooses one
control I from a set of controls I. Each control consists of activating either a single
queue, or a pair of queues. A control having only one queue activated corresponds
to a native packet transmission. A control with two activated queues corresponds to
the transmission of the XOR of two packets. Although the chosen control dictates
which packets are transmitted, the service (successful transmission) of a packet in
a queue is determined also by the overhearing vector sik which is uncontrollable.
We use the definitions of queue network stability from [11].

10 Paschos, Georgiadis and Tassiulas

Definition 1 (Queue stability) The queue ni of flow i is called stable if

lim sup
t→∞

1

t

t−1∑
τ=0

E
{
Xi(τ)

}
<∞.

Definition 2 (Network stability) The network is stable if all queues are stable.

A complete treatment of the problem would require to define stability to include
the overhearing buffers as well. A simple way to remove this extra complexity is to
have the relay send a “flush overheard packet queues” message whenever the relay
queues become empty. This does not alter the analysis of stability of the queues at
the relay. Thus, for the rest of the paper we will deal only with the relay queues.

We seek to find a policy π which selects an appropriate control at the beginning
of each slot such that the downlink of the network is stabilized. The stability region

of a policy π, Λπ is the closure of the set of arrival rates for which the network
is stable when π is in use. The throughput region Λ is the closure of the set of all
arrival vectors λλλ = {λi} stabilizable by any policy. A control policy π∗ is called
throughput optimal if its stability region is Λ, see [11,27] for implications of these
definitions.

5 Systems with deterministic overhearing information

In a system that operates with overhearing acknowledgments, such as COPE,
CLONE and ER, packet decoding information is provided deterministically at the
scheduler. Consequently, the feedback does not add information and thus schedul-
ing in this case is straightforward.

Define the set of all possible overhearing vectors for flow i:

Si = {s ∈ {0, 1}F : s(i) = 0}.

Next we assume that the relay creates 2F−1 queues for each flow i, each queue
corresponding to a different overhearing vector s ∈ Si. The set of queues is

N = {nis, i ∈ F , s ∈ Si}.

Therefore, each queue corresponds to a different combination of destination nodes
having overheard the packets backlogged there. Upon the arrival of a packet in
the uplink, the relay checks the overhearing vector of the packet and places it in
the appropriate queue.

For an illustrative example, say we have three flows F = {1, 2, 3}. The relay
constructs 12 queues, 4 for each flow, of the type nis, where for i = 1, 2, 3 and
s = (s(1), s(2), s(3)), s(i) = 0 and the rest of the components take values in {0, 1}.
Next a packet of flow 1 (say P 1

k) arrives at the relay along with the information
that it was overheard from the destination of flow 2 but not from the destination
of flow 3, i.e. the overhearing vector is s1

k = (0, 1, 0). Then the relay will assign this
packet to the queue n1

(0,1,0).
As a scheduling control the relay may choose to transmit a native packet from

one of the available F2F−1 queues or alternatively select two packets from two

Scheduling with pairwise XORing 11

R

()

Packets destined to
receiver 1

(2) (3) (2,3,..,F) () (1) (3) (1,3,..,F) () (1) (2) (1,2,..,F-1)

Packets destined to
receiver 2

Packets destined to
receiver F

Fig. 4 Deterministic case: for each flow, 2F−1 queues keep packets with different overhearing
vectors. The numbers in the parentheses show the flows the destination of which has correctly
overheard the queued packets.

queues belonging to different flows and transmit the encoded combination. For-
mally, we define the controls as carefully chosen subsets of the queue set N . For
a singleton control, serving queue nis, that belongs to flow i and has overhear-
ing vector s ∈ Si, we write I = {nis} for the control. The service rate will be
µ̂ni

s
(I) = rdown

i independently of the overhearing vector, and zero for all other

queues. For pair controls mixing queue nis1 of flow i with queue njs2 of flow j 6= i

with s1 ∈ Si and s2 ∈ Sj we write I = {nis1 , n
j
s2} and we have

µ̂ni
s1

(I) =

{
min{rdown

i , rdown
j } if s2(i) = 1

0 if s2(i) = 0

and similarly for µ̂
nj
s2

(I) by exchanging i with j and s2 with s1. Also, the rates

induced by this control on queues other than nis1 and njs2 are zero.
A throughput optimal algorithm in this case is a max-weight type algorithm

that weights the queue backlogs with the service rates for each control from the
set I and selects the one that maximizes the sum of this product. Denote with Xi

s

the backlog of queue nis.
Algorithm 1: At each decision slot:

1. For each control I = {nis1} form the reward C(I) = Xi
s1 µ̂ni

s1
(I).

2. For each control I = {nis1 , n
j
s2} form the reward C(I) = Xi

s1 µ̂ni
s1
(I) +Xj

s2 µ̂nj
s2
(I).

3. Then select I∗ = arg maxI∈I{C(I)}.

Proposition 1 Algorithm 1 is throughput optimal for a system with deterministic

overhearing information.

The Proposition is a straightforward application of the standard framework for
stochastic networks, see [18] and [11].

From this algorithm, it follows immediately that we can restrict pair controls
to queues nis1 , n

j
s2 for which s1(j) = s2(i) = 1. To see this, assume that we have

s2(i) = 0, in which case µ̂ni
s1

(I) = 0. Then the reward of the control I = {nis1 , n
j
s2}

is
C(I) = Xi

s1 µ̂ni
s1

(I) +Xj
s2 µ̂nj

s2
(I) = Xj

s2 µ̂nj
s2

(I) ,

12 Paschos, Georgiadis and Tassiulas

which is at most equal to the reward of control I ′ = {njs2} and therefore removing I
does not affect the optimization in step 3 of Algorithm 1. For reasons of complexity,
we can utilize this property and eliminate an important number of controls from
the set.

In a node serving F flows, at each slot the scheduler must select the best weight

out of F2F−1
(

1 + 2F−2(F − 1)
)

available controls. When the arrival rates are in

the interior of the stability region of the system and not too close to the boundary,
most of these queues are expected to be empty, and therefore the difficulty is simply
to design a dynamic list of such size. Many of these controls can be eliminated
since they are dominated by other controls (as explained above). Also, when the
channel state changes slowly, there exist methods to simplify the search over the
space of available controls, i.e. it is possible to update at each slot only the weights
for the controls that have changed during the last slot. In [2] the interested reader
may find CPU performance results of similar algorithms in real systems.

Extending the above algorithm to the case where we allow |P| > 2 is fairly
straightforward. The available controls are subsets of the set of queues N with the
property that no two queues from the same flow are selected:

I = {I ⊂ N : ∀nis1 , n
j
s2 ∈ I with nis1 6= njs2 we have i 6= j}.

Also we need to extend the service rate function. First, let FI ⊆ F be the set of
flows to which the queues in I belong. Also for each flow i ∈ FI pick a vector from
Si and name it si. For each queue nisi , i ∈ FI we get:

µ̂ni
si

(I) =

{
minj∈FI

{rdown
j } if sj(i) = 1 ∀j ∈ FI \ {i}

0 otherwise.

Conclusively, the case where the relay obtains deterministic knowledge about
overhearing events can be handled by the given framework even when we allow
for coding arbitrarily many packets together. Nevertheless, note that computa-
tionally the optimization problem in Algorithm I becomes much more complex.
Thus, restricting to pairwise XORing might still represent an appealing practical
solution.

6 Systems with statistical overhearing information

In a system where the scheduler possesses only statistical overhearing information,
scheduling becomes highly non-trivial, mainly because of feedback. An encoded
packet may not be successfully decoded because the corresponding destination
may not have overheard a key packet. In such a case, the scheduler must utilize
the feedback information if it is to make correct decisions. Moreover, the selection
of a control affects the efficiency of future controls, a property that poses further
complications in the analysis. To see this, consider an example of two packets from
two different flows, such that one is correctly overheard from the one destination
node and destined to the other (call it a good packet), while the other is not heard
by any of the two destination nodes (call it a bad packet). In the first scenario,
we transmit the XOR combination of the two, in which case the bad packet is
correctly received while the good remains in the system and the feedback tells us
that it is overheard by the other destination. In the second scenario, we simply

Scheduling with pairwise XORing 13

transmit natively the bad packet which gets received. If we compare the network
state of the two scenarios, we see that the queues hold the same packets but the
scheduler in the first case knows the overhearing state of the bad packet while in
the second not. This extra knowledge can be utilized for increasing the efficiency
of scheduling. Also, the expected reward calculated by the scheduler is different
depending on past control decisions. Such a case is not allowed in the framework
in [11]. Also, previous works [28,15] have studied cases of such dependence where
the state of the link qualities evolves as a Markov process. Here, however, we deal
with the complication of feedback from the overhearing events and a modification
of the approach is required.

To reflect the feedback changes on our queue-based scheduling algorithm we
propose a virtual network mechanism. The high-level idea is that the virtual nodes
hold in their queues packets with a given overhearing state. This way, it is guar-
anteed that each packet is present in only one virtual node.

6.1 The virtual network mechanism

To illustrate the virtual network mechanism we start with the case of two flows
(F = 2) and we allow the transmission of either native packets, or the XOR
combination of the pair.

6.1.1 Virtual network for two flows

We will use the notation i, ī with 1̄
.
= 2 and 2̄

.
= 1. Any particular packet P ik of

flow i can be categorized by the scheduler into different states according to the
estimation of the event sik (̄i) = 1 : “the destination of flow ī has P ik” as follows:
Unknown state (u): In this case the scheduler has only statistical information

about sik (̄i), i.e it knows P
(
sik (̄i) = 1

) .
= qīi, where we allow 0 ≤ qīi ≤ 1.

Good state (g): In this case the scheduler knows that sik (̄i) = 1.

Bad state (b): In this case the scheduler knows that sik (̄i) = 0.
In order to group packets with the same properties together, we define for

each flow i a directional subnetwork (subgraph) Gi = (Ni, Ei) having one node
for each possible packet state and one for the destination. The destination node
serves as a sink for all packets of the same flow and thus, once a packet reaches
the destination node, it disappears from the virtual network. We write Ni =
{niu, nig, nib, n

i
d}, i = 1, 2 for the virtual node set. In order to capture the pos-

sible state transitions, we define the virtual link set to consist of the ordered pairs
Ei = {eiud, e

i
gd, e

i
bd, e

i
ug, e

i
ub, e

i
gg, e

i
bb}, with eikm

.
= (nik, n

i
m) and i = 1, 2. The virtual

network will be the union of the two subnetworks for i = 1, 2, see Figure 5.
We associate each node of the virtual network with a queue (i.e. node-queue

niu holds packets of flow i being at unknown state). The packets of flow i enter the
virtual network at the node niu, they are routed inside the network and eventually
leave the system when they reach node nid -thus the destination node queue is
always empty. At each time slot, the scheduler selects a control which corresponds
to activating either a) one node from the virtual network or b) two nodes from two
different subnetworks, excluding destination nodes. Once a control is taken, the
first packet in each selected node (head-of-line, HOL, packet) is transmitted. In

14 Paschos, Georgiadis and Tassiulas

I w1
ud w1

ug w1
ub w1

gd w1
gg w1

bd w1
bb

{n1
u, n

2
u} q21 (1− q21)q12 (1− q21)(1− q12) 0 0 0 0

{n1
u, n

2
g} 1 0 0 0 0 0 0

{n1
u, n

2
b} 0 q12 1− q12 0 0 0 0

{n1
g , n

2
u} 0 0 0 q21 1− q21 0 0

{n1
g , n

2
g} 0 0 0 1 0 0 0

{n1
g , n

2
b} 0 0 0 0 1 0 0

{n1
b, n

2
u} 0 0 0 0 0 q21 1− q21

{n1
b, n

2
g} 0 0 0 0 0 1 0

{n1
b, n

2
b} 0 0 0 0 0 0 1

Table 1 Transition weights in the subnetwork G1 for all pair controls.

nu1

nd1

ng1 nb1wud1

wug1
wub1

wgd1
wbd1

wgg1 wbb1

λ1

nu2

nd2

ng2 nb2wud2

wug2
wub2

wgd2
wbd2

wgg2 wbb2

λ2

Fig. 5 The virtual network for the case of 2 flows consists of two subnetworks, one for each
flow.

general, the recipient of a transmitted packet is determined randomly according
to a probabilistic law that depends on the chosen control. While the scheduler
knows the probability law, it does not know the actual recipient - unless the
probability of transition to a particular recipient is 1. To reflect this, each link
(k,m) of subnetwork Gi is associated with a probability weight wi(k,m)(I) that
depends on the control taken (sometimes and if there is no possibility for confusion
we may omit superscript i for simplicity). For any given control I and any node k
we have

∑
m∈Nk w(k,m)(I) = 1 where N k is the set of neighbors of k.

Next we describe all possible transitions of a packet of flow 1 when the control
I = {n1

u, n
2
u} is taken. For simplicity, for the remaining of this Section as well as

Figure 5 and Table 1, we slightly abuse the notation by writing w1
ud to represent

w1
(n1

u ,n
1
d). Note that elsewhere, the indices of wi(k,m)(I) are nodes, whereas here

refer to letters. To determine the transitions of the packet of flow 1, we check
the state of the packet of flow 2 which in this case is unknown. Using the matrix
Q (the scheduler obtains this matrix through a separate mechanism as explained
in Section 3) we can calculate the probability of correct decoding for destination
δ1, which is q21. If the decoding fails (it happens with probability 1 − q21), then
the scheduler will learn the state of the packet of flow 1, based on the received

Scheduling with pairwise XORing 15

feedback from the two destinations. It can be the good state with probability
q12 (thus moves to the node n1

g with probability q12(1 − q21)) or the bad state
with probability 1 − q12 (in which case it moves to the node n1

b with probability
(1 − q12)(1 − q21)). Thus for the chosen control we get w1

ud(I) = q21, w1
ug(I) =

q12(1− q21), w1
ub(I) = (1− q12)(1− q21) and all the rest weights are zero. Similarly

we develop the link weights for subnetwork G2 by exchanging 1 and 2.
If the scheduler selects the control I = {n1

u, n
2
g} then the packet of flow 1 will

definitely leave the system. Thus now we have w1
ud(I) = 1 and the rest weights are

zero. Instead if the scheduler selects the control I = {n1
u, n

2
b}, we obtain w1

ud(I) = 0,
w1
ug(I) = q12 and w1

ub(I) = 1 − q12. Also, given the controls {n1
g , n

2
u} or {n1

g , n
2
u},

note that the packet of flow 1 will be either sent to destination or stay at the
same node since the packet state is known to the scheduler and cannot change.
The weights of the subnetwork G1 for all controls that activate pairs of queues are
given in the Table 1.

6.1.2 Virtual network for F flows and pairwise XOR

The extension of the virtual network mechanism to the case of F flows using
pairwise XOR is natural due to the complete feedback information provided. Each
packet state is now characterized by the scheduler knowledge about the overhearing
vector that contains information about packet knowledge in all F −1 destinations.
Thus, instead of having three states as before, now we have 3F−1 states. Corre-
spondingly, each of the F independently created subnetworks will have 3F−1 + 1
nodes, one for each state and one for the destination. We use the generalized nota-
tion for the nodes niv, where i ∈ F indicates the flow and v is a ternary overhearing
vector taking values in {u, g, b}F with v(i) = g by convention (in the previous sub-
section and Figures 5, 6 we have chosen to omit this element for presentation
simplicity). See Figure 6 for an example with F = 3. The routing of packets in
this network follows exactly the same rules as in the 2–flows case. Specifically,
when combining two packets, say belonging to flow i and j 6= i, the routing is de-
termined by the elements vj(i) and vi(j) correspondingly and by the overhearing
probabilities qji and qij . Also, in case of failure, only the states vi(j) and vj(i)
become affected. An exception to this is when the physical receiving node is the
destination of more than one flow. Since, the overhearing event concerns primarily
the physical nodes and not the flows, the feedback information should update all
the elements of vector v that correspond to flows that have as destination this
given node. Note that this complicates the construction of the virtual network but
does not affect the analysis for the stability of it. In Figure 6, all possible links are
identified for the case of disjoint destinations. Note for example, that n1

u,u is not
directly connected with n1

g,g since in order to move from n1
u,u to n1

g,g at least two
transmissions are needed.

The problem of scheduling the packets in the original downlink system is
mapped to the problem of scheduling the packets in the corresponding virtual
network. By representing one queue in the original problem with a subnetwork,
we have added another dimension which captures the knowledge obtained progres-
sively about the overhearing states of each packet using the feedback received at
the relay. For two packets backlogged in the same virtual node, the scheduler has
the same belief and thus these two packets are stochastically equivalent in terms of

16 Paschos, Georgiadis and Tassiulas

nd1

nu,u1 ng,u1 nb,u1

nu,g1 ng,g1

nu,b1 ng,b1

nb,g1

nb,b1

λ1

Fig. 6 The virtual subnetwork of flow 1 for the case of 3 flows. Each node represents a possible
state of packets of flow 1 as regards the overhearing event in destinations of flows 2, 3, i.e. node
n1
b,g holds packets that have been overheard by the destination of flow 3 but not from the

one of flow 2. The gray arrows connect all nodes to the destination. The packets enter the
state n1

u,u with randomly drawn and unknown overhearing state and navigate until reaching
the destination node.

transmission efficiency (i.e. the have the same expected reward), a desired property
that is enabled by the use of the virtual network.

6.2 Optimal control of the virtual network for F flows and pairwise XOR

The virtual network developed in Section 6.1.2 differs from the general network
treated in [11] in the following important aspect. When a control I ∈ I is selected
and a packet is chosen for transmission by node j2, the recipient of the packet
is randomly chosen among the outgoing neighbors of node j. Node j does not
know the recipient a priori, but it knows the probability of the packet ending to
a particular outgoing neighbor -this probability depends on the chosen control.
Hence the results in [11] cannot be applied directly. However, the methods used
in [11] can be extended to analyze the network of interest and to develop an
algorithm with maximal stability region. We outline below the main steps of the
development.

The virtual network G = (N , E) developed in 6.1.2 consists of the union of F

subnetworks, Gi = (Ni, Ei) , i ∈ F . Let Ejo ,N jo be respectively the set of outgoing
links and neighbors of node j ∈ N , and Xj its backlog. Also, for a given control
I, let w(j,k)(I) be the probability that a packet transmitted by node j ends up at

node k ∈ N jo .

2 In the following we will use a simple notation for the nodes. Remember, however, that
each node carries information about a flow and a ternary overhearing vector, i.e. the formal
name could be for example ni

v.

Scheduling with pairwise XORing 17

We assume a slotted system and generalize the network presented in Section
6.1.2 by introducing transmission rates other than 0 and 1 as follows: when control
I ∈ I is chosen, the maximum number of packets that may be “transmitted”
by node j over the link set Ejo is µ̂j(I). For the model of Section 6.1.2 µ̂j(I) is
determined as follows.

– If a control I involves transmission from a single node j located at subnetwork
i, then

µ̂k(I) =

{
rdown
i if k = j

0 otherwise ,

where rdown
i is the maximum number of packets that may be transmitted from

the relay to δi in a slot.
– If the control involves an XOR packet from nodes j1, j2 located at subnetworks
i1, i2 6= i1 respectively, then

µ̂k(I) =

{
min{rdown

i1 , rdown
i2 } if k = j1or k = j2

0 otherwise .

– For any other control µ̂k(I) = 0, ∀k ∈ G.
– If a control is taken that requires transmission from a queue which has fewer

packets than the specified maximum rates, then dummy packets, i.e., packets
with id set to zero, are sent instead3. This is true also for the case of controls
that correspond to transmitting XORs. As we will see in Appendix III this
does not give rise to inefficiencies.

We can now present the throughput region of the system. Define the following
set of flow variables for each of the network links

f = {fe, e ∈ E}.

For control I ∈ I define the set of vectors f ,

Γ (I) =
{
f = {fe} : e = (j, k), f(j,k) = w(j,k)(I)µj : 0 ≤ µj ≤ µ̂j(I), j ∈ N , k ∈ N jo

}
,

where µj indicates exactly the uncontrollability of where the packet ends up when
transmitted from node j. If, for example, one of the possible recipients is a dead
end, then we must have µj = 0 in order to define the link capacities correctly.
Next, define the convex hull of the sets Γ (I)

C = conv (Γ (I) , I ∈ I) (1)

Theorem 1 (Throughput Region) The throughput region of the system is the set

of arrival rates λλλ =
{
λj
}
j∈N , λj ≥ 0, for which there exists a vector f ∈ C such that

for any node j ∈ N except the destination nodes it holds∑
e=(k,j)∈Eko

fe + λj ≤
∑
e∈Ejo

fe.

3 The notion of the dummy packet is introduced for technical reasons so the decoding prob-
ability for a control does not depend on queue length. Note that XOR controls with dummy
packets are dominated by controls without XORs and as such these controls are never applied
by our proposed algorithm.

18 Paschos, Georgiadis and Tassiulas

Proof The derivation of the throughput region is based on an extension of the
methodology developed in [18]. It is presented in the Appendix I.

Note, that for the problem at hand, the packets always arrive at the nodes
with all elements in unknown states, thus the throughput region can be thought
as an F -dimensional object.

Algorithm 2: At each decision slot:

1. For each control I = {j}, j ∈ G form the reward C(I) = Xj µ̂j (I).
2. For each control I = {i, j}, i, j ∈ G, j 6= i

– form the weights

ci(I) = max

Xi − ∑
k∈N i

o

w(i,k)(I)Xk, 0

 ,

cj(I) = max

Xj − ∑
k∈N j

o

w(j,k)(I)Xk, 0

 ,

– and then the reward

C(I) = ci(I)µ̂i (I) + cj(I)µ̂j (I) .

3. Then select I∗ = arg maxI∈I{C(I)}.

Theorem 2 (Optimality of Algorithm 2) Algorithm 2 is throughput optimal for

the system described in Section 6.1.2 and the assumptions 1-5.

Proof Based on the throughput region described above and using Lyapunov func-
tion techniques as in [11], we show in the Appendix II that the algorithm described
above has maximal stability region.

A question that can be raised regarding Algorithm 2 efficiency relates to situ-
ations where the links permit the transmission of a great number of packets while
the queue sizes are small. We give an answer to this question in Appendix III.

7 Numerical results

We have used a discrete event simulator written in Matlab to analyze scheduling
performance of the proposed algorithms and compare it to other simple heuristic
algorithms used in practical systems. We study the case of F = 2 flows with all
links having unit rate (1 packet/slot) and probabilities of overhearing q12 and q21.
We generate packets using a Poisson process with rate λ1 and λ2 correspondingly
for the two flows and we run the simulation for 50k time slots.

In addition to algorithms 1 and 2, we are interested in algorithms that are not
based on queue information.

1. Deterministic (det): The scheduler identifies the HOL packets and using de-
terministic overhearing information selects the largest possible combination of
packets that can be decoded. The ties are resolved randomly.

Scheduling with pairwise XORing 19

2. Deterministic advanced (det adv): Similar with deterministic, with the dif-
ference that the scheduler can select among any packet in the queue. This
algorithm avoids the well known problem of input-queued switches called HOL
blocking, [17]. This policy is expected to have the best performance since it
utilizes deterministic knowledge of overhearing and knowledge of arrival rates.

3. Statistical (sta): If both q12 and q21 are larger than 0.8, the XOR combination
of the HOL packets is transmitted, otherwise one of the packets in the queues
is chosen at random for transmission. Note that this threshold policy has been
proposed in previous works as a simple suboptimal heuristic.

We compare the algorithms by plotting the average aggregate queue backlogs
of the system when each algorithm is in use after 50k slots. As long as the backlogs
are retained small, the system is stable. We plot the average aggregate backlogs
for several values of λ1 and we set λ2 = αλ1 where α is a scaling constant defined
differently in each setting.

In Figures 7-a and 7-b we set q12 = q21 = 0.6 and α = 1 on Figure 7-a, α = 0.5
on Figure 7-b. We call this case symmetric, since both flows have same chances of
being overheard by the pair destination. First, a direct comparison can be made
between Algorithm 1 and det adv. Both algorithms decide using deterministic
information of overhearing events and indeed they appear better than the rest of
the algorithms. The difference between the two algorithms is that Algorithm 1 is
based on queue information and it is provably throughput optimal. The algorithm
det adv will always encode if an opportunity appears, but the queue agnostic
approach it is using is expected to bring a small deterioration in the performance
in dynamic (in terms of arrival rate for example) scenarios. Nevertheless, for the
static scenarios shown, the two algorithms are quite similar in performance and
the simulation granularity does not allow for distinguishing between the two. Both
can be thought as yardsticks for the rest of the algorithms.

In order to compare the performance of two algorithms, one can decide on a
limit for the backlogs (say 50) and compare the arrival rate for which the two
algorithms exceed this value. We call the difference between these two values the
throughput performance gap. The gap between algorithm det and the det adv
algorithm provides an estimation of the efficiency loss due to HOL blocking. This
loss seems to be higher when the arrival rates are not equal (it is 0.042 in Figure
7-a and 0.12 in Figure 7-b).

The gap between Algorithm 2 and Algorithm 1 depicts the efficiency loss due to
the use of statistical information instead of deterministic one (it is 0.045 in Figure
7-a and 0.066 in Figure 7-b). This can be also compared to the gap between
these algorithms and the sta algorithm which in this scenario behaves as if NC is
disabled. For example, we may observe that the performance gap from not using
NC is +0.12 (24%) for relying only on statistical information (Algorithm 2) and
+0.165 (33% corresponding to the improvement of λ1) when having deterministic
overhearing information (Algorithm 1) in Figure 7-a. Despite the fact that the lack
of deterministic information brings reduction in throughput, it is evident that a
throughput gain due to NC is still maintained even for relatively small overhearing
probabilities and this is an encouraging result. Using the statistical overhearing

20 Paschos, Georgiadis and Tassiulas

0 , 4 0 0 , 4 5 0 , 5 0 0 , 5 5 0 , 6 0 0 , 6 5 0 , 7 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
A v e r a g e a g g r e g a t e b a c k l o g

� 1

 s t a
 A l g o r i t h m 2
 d e t
 d e t _ a d v
 A l g o r i t h m 1

(a)

0 , 5 0 , 6 0 , 7 0 , 8 0 , 9
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
A v e r a g e a g g r e g a t e b a c k l o g

� 1

 s t a
 A l g o r i t h m 2
 d e t
 d e t _ a d v
 A l g o r i t h m 1

(b)

0 , 4 0 0 , 4 5 0 , 5 0 0 , 5 5 0 , 6 0 0 , 6 5 0 , 7 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
A v e r a g e a g g r e g a t e b a c k l o g

� 1

 s t a
 A l g o r i t h m 2
 d e t
 d e t _ a d v
 A l g o r i t h m 1

(c)

0 , 6 0 0 , 6 5 0 , 7 0 0 , 7 5 0 , 8 0 0 , 8 5 0 , 9 0 0 , 9 5
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
A v e r a g e a g g r e g a t e b a c k l o g

� 1

 s t a
 A l g o r i t h m 2
 d e t
 d e t _ a d v
 A l g o r i t h m 1

(d)

0 , 2 5 0 , 3 0 0 , 3 5 0 , 4 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0
A v e r a g e a g g r e g a t e b a c k l o g

� 1

 s t a
 A l g o r i t h m 2
 d e t
 d e t _ a d v
 A l g o r i t h m 1

(e)

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 00 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

�1

 T h r o u g h p u t R e g i o n

�2

�1 ��2

 s t a
 A l g o r i t h m 2
 d e t
 d e t _ a d v
 A l g o r i t h m 1

(f)

Fig. 7 (a)–(e) Average aggregate backlog. (a) Symmetric case q12 = 0.6 and q21 = 0.6;
λ2 = λ1. (b) Symmetric case q12 = 0.6 and q21 = 0.6; λ2 = 0.5λ1. (c) Asymmetric case
q12 = 0.5 and q21 = 0.8; λ2 = λ1. (d) Asymmetric case q12 = 0.5 and q21 = 0.8; λ2 = 0.5λ1.
(e) Asymmetric case q12 = 0.5 and q21 = 0.8; λ2 = 2λ1. (f) Throughput region measured such
that average backlog is always smaller than 500. Asymmetric case q12 = 0.5 and q21 = 0.8;

information is well motivated by these Figures. Also, using a fixed threshold (e.g.
0.8) is clearly not a good solution.

Scheduling with pairwise XORing 21

In Figures 7-c,d,e we set q12 = 0.5 and q21 = 0.8 and thus make the decoding
of flow 1 more probable than that of flow 2 (asymmetric case). We further impose
α = 1 in Figure 7-c, α = 0.5 in Figure 7-d and α = 2 in Figure 7-e for the relation of
arrival rates between the two flows. The gain of Algorithm 2 versus the no NC case
(algorithm sta) is +0.118 (23%), +0.179 (27%) and +0.005 (15.1%) in the three
Figures respectively. Similarly the gain of Algorithm 1 is +0.163 (32.5%), +0.236
(35.7%) and +0.07 (21%). The performance gap is always retained above 20%,
which demonstrates the ability of queue-based algorithms to adapt to asymmetric
scenarios and unknown arrival rates. Note that the accuracy of the results when the
backlogs are very high is not satisfactory, thus the rippling between the Algorithm
1 and det adv lines in Figure 7-c. We interpret this rippling as a statistical error
and we stress that for accurate comparison the range of values (0-100) should be
used, where we provide more detail (more figure points).

The above comparison is made clear in the last Figure, 7-f, where we demon-
strate the stability region of all algorithms for the case of q12 = 0.5 and q21 = 0.8.
A point in this region is found by fixing α and making a binary search with ac-
curacy 0.001. A point (λ1, λ2) is considered stable if after 25000 slots, all flow
backlogs (the sum of backlogs of the queues belonging to one flow) remain smaller
than 500. The area separating Algorithm 1 and Algorithm 2 is the regret region
and describes the loss in throughput due to lack of deterministic knowledge about
the state.

8 Conclusions

In this paper we addressed the problem of downlink scheduling when pairwise
XORing of packets is allowed and there is statistical overhearing information and
feedback at the relay. We developed a virtual network approach to address the
problem at hand. This virtual network was used to provide a stabilizing back-
pressure policy. In this work the statistical overhearing information is assumed to
be provided to the relay by an independent mechanism. It seems possible to use
the received feedback to estimate the overhearing probabilities along the lines of
[19], however the exact manner this can be done and the potential benefits need
to be further investigated. Future work of interest pertains to generalizing the
model, considering uplink and downlink jointly as well as multihop scheduling,
allowing for storing of encoded packets, including channel erasures and developing
approximation algorithms for the case of |P| > 2, see Appendix IV.

The model of the virtual network is a versatile model which can be extended in
many ways. For the wireless NC problem, an interesting extension left for future
work is to study the problem when some of the Assumptions 1-5 in Section 3 are
relaxed. Such a task can be performed in a two step process. First, one needs to
identify the appropriate definition of a virtual network that captures accurately all
the aspects of the actual system. Then, the approach of Section 6 can be applied
to provide the throughput region and a throughput optimal algorithm. While this
programme seems promising, several intricacies arise when one takes a closer look
at relaxing the assumptions; special constraints on admissible controls arise and in
certain cases the virtual network contains an infinite number of nodes, the study
of which may require the development of new techniques.

22 Paschos, Georgiadis and Tassiulas

Finally, our model assumes that si(i) = 0, i.e., the destination of a flow can-
not overhear the source. We introduced this assumption in order to simplify the
discussion. If the assumption is relaxed, then two cases can be considered:

1. The relay knows deterministically whether each receiver has overheard a packet
destined to itself. Then it can place in the queues only the packets that are not
overheard and the model is not affected.

2. The relay knows statistically whether each receiver has overheard a packet
destined to itself. This case can also be dealt with the method presented in
this paper, by enhancing the feedback mechanism. Specifically an extra bit can
be added in each ACK message when an XOR packet is sent, indicating the
above knowledge, i.e. whether the ACK was due to successful decoding having
the key or because of a direct overhearing from the source.

The study of the case where there is the possibility of retransmission from the
source or from the relay involves a more complicated scheduling problem and is
left as future work.

Acknowledgements We would like to thank the anonymous reviewers for their valuable
contribution to the improvement of this work.

References

1. MIT Roofnet. http://pdos.csail.mit.edu/roofnet.
2. NCRAWL experiments. http://nitlab.inf.uth.gr/NITlab/index.php/ncrawl-

experiments/results.html.
3. R. Ahlswede, N. Cai, S-Y. R.Li, and R. W. Yeung. Network information flow. In IEEE

Trans. Inform. Theory, pp. 1204-1216, July 2000.
4. I. Broustis, G. S. Paschos, D. Syrivelis, L. Georgiadis, and L. Tassiulas. NCRAWL: Net-

work Coding for Rate Adaptive Wireless Links. arXiv:1104.0645.
5. P. Chaporkar and A. Proutiere. Adaptive Network Coding and Scheduling for Maximizing

Throughput in Wireless Networks. In ACM MOBICOM, 2007.
6. P. Chaporkar, A. Proutiere, H. Asnani, and A. Karandikar. Scheduling with limited in-

formation in wireless systems. In ACM MobiHoc, pages 75–84, 2009.
7. M.A.R. Chaudhry and A. Sprintson. Efficient algorithms for index coding. In IEEE

INFOCOM, 2008.
8. A. Eryilmaz and D. S. Lun. Control for inter-session network coding. In Proc. of ITA

Workshop, February 2007.
9. C. Fragouli, D. Katabi, A. Markopoulou, M. Medard, and H. Rahul. Wireless network

coding: Opportunities & Challenges. In IEEE Military Communications Conference 2007,
October 2007.

10. A. Fu, E. Modiano, and J.N. Tsitsiklis. Optimal transmission scheduling over a fading
channel with energy and deadline constraints. IEEE Trans. on Wireless Communications,
5(3):630–641, 2006.

11. L. Georgiadis, M. Neely, and L. Tassiulas. Resource allocation and cross-layer control in
wireless networks. Foundations and Trends in Networking, 1:1–147, 2006.

12. A J. Goseling, R. Matsumoto, T. Uyematsu, and J. H. Weber. Lower Bounds on the
Maximum Energy Benefit of Network Coding for Wireless Multiple Unicast. EURASIP
Journal on Wireless Communications and Networking (Special Issue on Wireless Network
Coding), (Article ID 605421), 2010.

13. T. Ho, Y. Chang, and K. J. Han. On constructive network coding for multiple unicasts. In
Proc. of 44th Allerton conference on Communication, Control and Computing, September
2006.

14. T. Ho and H. Viswanathan. Dynamic algorithms for multicast with intra-session network
coding. IEEE Trans. Inf. Theor., 55:797–815, February 2009.

Scheduling with pairwise XORing 23

15. K. Jagannathan, S. Mannor, I. Menache, and E. Modiano. A state action frequency
approach to throughput maximization over uncertain wireless channels. In the 30th IEEE
International Conference on Computer Communications, INFOCOM 2011, pages 491–
495, 2011.

16. S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft. XORs in The Air:
Practical Wireless Network Coding. In ACM SIGCOMM, 2006.

17. A. Mekkittikul and N. McKeown. A Practical Scheduling Algorithm to Achieve 100%
Throughput in Input-Queued Switches. In IEEE Infocom, pages 792–799, April 1998.

18. E. Modiano M.J. Neely and C. Rohrs. Dynamic power allocation and routing for time-
varying wireless networks. IEEE Journal on Selected Areas in Communications, 23:89–
103, January 2005.

19. M. Neely. Max weight learning algorithms with application to scheduling in unknown
environments. In Information Theory and Applications Workshop, pages 240–249, 2009.

20. M. Neely. Dynamic Power Allocation and Routing for Satellite and Wireless Networks
with Time Varying Channels. Ph.D. Dissertation, Massachusetts Institute of Technology,
LIDS. November 2003.

21. M. J. Neely. Energy optimal control for time varying wireless networks. IEEE Trans. Inf.
Theor., 52:2915–2934, July 2006.

22. G. S. Paschos, L. Georgiadis, and L. Tassiulas. Optimal scheduling of pairwise XORs
under statistical overhearing and feedback. In RAWNET workshop: Workshop on Resource
Allocation and Cooperation in Wireless Networks, WiOPT, April 2011.

23. S. Rayanchu, S. Sen, J. Wu, S. Banerjee, and S. Sengupta. Loss-Aware Network Coding
for Unicast Wireless Sessions: Design, Implementation, and Performance Evaluation. In
ACM SIGMETRICS, 2008.

24. E. Rozner, A.P. Iyer, Y. Mehta, L. Qiu, and M. Jafry. ER: Efficient Retransmission Scheme
for Wireless LANs. In ACM CONEXT, 2007.

25. B. Scheuermann, W. Hu, and J. Crowcroft. Near-Optimal Co-ordinated Coding in Wireless
Multihop Networks . In ACM CONEXT, 2007.

26. A. L. Stolyar. Maximizing queueing network utility subject to stability: Greedy primal-
dual algorithm. Queueing Systems, 50:401–457, July 2005.

27. L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transac-
tions on Automatic Control, 37:1936–1948, 1992.

28. L. Ying and S. Shakkottai. On throughput optimality with delayed network-state infor-
mation. In Information Theory and Applications Workshop, pages 339–344, 2008.

Appendix I

In this Appendix we give the proof for the necessity of the conditions of Theorem
1. The sufficiency of the the conditions follows directly from the proof of Theorem
2 which shows that Algorithm 2 stabilizes the system for any arrival rate vector
that is in the interior of the throughput region.

The proof of this Section is based on the technique used in [10]. We will need
the following lemmas.

Lemma 1 If a random vector X(t) converges to X on a set A then for any ε > 0

lim
t→∞

P({|X (t)−X| ≤ ε} ∩A) = P(A) .

Lemma 2 Consider two sequences of real numbers at, bt t = 1, 2, Then

lim sup
t→∞

(at + bt) ≥ lim sup
t→∞

at + lim inf
t→∞

bt.

Lemma 3 If a network is stable then

lim
V→∞

lim inf
t→∞

P

∑
j∈N

Xj (t) > V

 = 0.

24 Paschos, Georgiadis and Tassiulas

Lemmas 1 and 2 can be found in standard textbooks while a proof of Lemma
3 can be found in [20].

Stability Region: we repeat here the definition of the stability region as in
Theorem 1.

– Let f denote a vector
f = {fe : e ∈ E}

and for I ∈ I, let Γ (I) be the set of vectors f defined as

Γ (I) =
{
f : e = (j, k) ∈ Ejo , fe = wje(I)µj , 0 ≤ µi ≤ µ̂i (I) , i ∈ N

}
. (2)

Note that that Γ (I) is convex.
– Let

C =

{
f : f =

∑
I∈I

φIfI , fI ∈ Γ (I) ,
∑
I∈I

φI = 1

}
.

Since Γ (I) , I ∈ I are convex it can be shown that

C = conv {Γ (I) : I ∈ I} ,

where conv(A) denotes the convex hull of A.
– The stability region is the set of arrival rates λ = {λi}i∈N for which there

exists a vector f in C such that for any node i ∈ N∑
e∈Eiin

fe + λi ≤
∑
e∈Eio

fe.

For the proof we consider a somewhat more general network than the one
presented in Section 6. Specifically, we consider a network consisting of N ∪ d
nodes and E links, where the special node d represents the destination of traffic
originated at the other nodes in N . Let Eio represent the set of outgoing links from
node i and Eiin set of incoming links. A finite set of controls I is available. For each
control I ∈ I, “transmission” takes place over the sets of outgoing links of node
i ∈ N , Eio, as follows.

– If at a given slot control I ∈ I is applied, then for any node i ∈ N at most
µ̂i(I) ≥ 0 packets may be transmitted over the set Eio in the following random
manner.

– For each i ∈ N and I ∈ I there is a random sequence
{
Rin (I)

}∞
n=1

, where each

Rin (I) takes values in the set Eio. The nth packet transmitted over the set Ei
when control I is applied, is received only by the recipient of the link Rin (I) .

For a given n and I, the random variables
{
Rin (I)

}
i∈N may be arbitrarily

correlated. Moreover the random sequences
{
Rin (I)

}∞
n=1

are obeying the strong
law of large numbers, i.e., for any I ∈ I, i ∈ N ,

Scheduling with pairwise XORing 25

lim
n→∞

∑n
m=1 1

[
Rim (I) = e

]
n

= wie(I) a.e., e ∈ Eio (I) , (3)∑
e∈Ei

wie(I) = 1. (4)

Packets may arrive at each node i ∈ N and must be delivered to destination
node d. We denote by Ai(t) the number of arrivals up to time t. We assume that

lim
t→∞

Ai(t)

t
= λi, i ∈ N .

If in the virtual network developed in Section 6 all destination nodes nid are re-
placed by a single node d, maintaining the links of the destination nodes with the
rest of the nodes in N , the resulting network is a special case of the network model
defined here. We mention that the model presented here can be easily generalized
to include channel states and multi commodity flows but we opted for the cur-
rent description since it suffices for our purposes and avoids further complicated
notation.

In the following, to avoid trivial cases we assume that there is a path from
every node i ∈ N to d (this is needed in the sufficient conditions to justify the
existence of an interior point).

Assume that a policy π stabilizes the network for a rate vector {λi}i∈N . Let
the system operate under this policy and define the following random variables

– W (I, t): subset of time slots in {1, ..., t} when control I is applied. Let W (I, t) =
|W (I, t)|.

– F i (I, t) : the number of packets transmitted up to time t over set Eio, when
control I is applied.

– Fe (t): total number of packets transmitted over link e up to time t.

According to the definitions above, it holds∑
I∈I

W (I, t) = t (5)

and for any e = (i, k) ∈ Ei,

Fe (t) =
∑
I∈I

F i(I,t)∑
m=1

1

[
Rim (I) = e

]
, (6)

where we define
∑0
m=1Xi = 0.

Let Xi(t) be the number of packets at node i at time t. Assuming that the
queues are initially empty, the following holds for any node i other than the des-
tination node.

Ai(t) +
∑
e∈Eiin

Fe(t)−
∑
e∈Eio

Fe(t) = Xi(t). (7)

The rest of the proof involves several technical details. To clarify the steps,
we provide first an outline of the proof making some simplifying assumptions.
Specifically, assume that under policy π, for any I ∈ I,

26 Paschos, Georgiadis and Tassiulas

1. The (long term) proportion of time when control I is applied is well defined
and positive, (hence limt→∞W (I, t) =∞),

lim
t→∞

W (I, t)

t
= φI > 0.

2. The average number of packets transmitted when control I is applied is well
defined,

lim
t→∞

F i(I, t)

W (I, t)
= µi(I).

We note that these assumptions do not hold for all policies and thus some ill-
behaving policies are left outside this consideration. The technical details that
complicate the proof aim at removing these assumptions.

We have from (5), ∑
I∈I

φI = 1

and from (3), (4), (6), for e = (i, k)

fe , lim
t→∞

Fe(t)

t

= lim
t→∞

∑
I∈I

W (I, t)

t

F i(I, t)

W (I, t)

F i(I,t)∑
m=1

1
[
Rim(I) = e

]
F i(I, t)

=
∑
I∈I

φI

(
µi(I)w

i
e(I)

)
(8)

Since at most µ̂i(I) packets can be transmitted in each slot when control I is
applied, it holds

0 ≤ µi(I) ≤ µ̂i(I).

From this and (8) we see that the vector {fe}e∈E belongs to the region C. Moreover,
dividing both sides of (7) by t, taking limit as t→∞and using the fact that for a
stabilizing policy limt→∞Xi(t)/t = 0, we have from (7),

λi +
∑
e∈Eiin

fe =
∑
e∈Ei0

fe, for i ∈ N

which implies that the arrival rate vector belongs to the Stability region as claimed.
We now proceed with the detailed proof.
In the following Ω denotes the underlying probability space. Let PT =

(
Ta, Tf

)
denote a partition of a set T , i.e., T = Ta ∪ Tf , Ta ∩ Tf = ∅, and denote by PT the
set of these partitions. We need the following preliminary lemmas.

Lemma 4 Let the stabilizing policy π be applied. Then there is a partition PoI =(
Ioa, Iof

)
of the control set I, with Ioa 6= ∅, such that the set

Ω0 =
{
ω : lim

t→∞
W (I, t) =∞, I ∈ Ioa, lim

t→∞
W (I, t) <∞, I ∈ Iof

}
has positive probability.

Scheduling with pairwise XORing 27

Moreover, there are partitions of the set Ioa,
{
PiIoa

}
i∈N

=
{(
Io,ia , Io,if

)}
i∈N

such

that the subset of Ω0,

Ω1 =
{
ω ∈ Ωo : lim

t→∞
F i(I, t) =∞, I ∈ Io,ia , lim

t→∞
F i(I, t) <∞, I ∈ Io,if , i ∈ N

}
has positive probability.

Proof Since the sequence W (I, t) is nondecreasing in t it converges either to a finite
number or to infinity. Hence defining

ΩT =
{
ω : lim

t→∞
W (I, t) exists

}
,

we have that P(ΩT) = 1. Define now

ΩPI =
{
ω : lim

t→∞
W (I, t) =∞, I ∈ Ia, lim

t→∞
W (I, t) <∞, I ∈ If

}
.

Then,

ΩT = ∪PI∈PIΩPI .

Since P(ΩT) > 0, one of the sets on the right of the last equality must have nonzero
probability and this establishes the existence of Ω0. Moreover, if Ia = ∅ then (7)
on Ω0 we would have

lim
t→∞

∑
I∈I

W (I, t) <∞,

which contradicts (5).
Decomposing Ω0 in a similar fashion based on the existence of limits of the

sequences F i(I, t), establishes the second part of the lemma.

Lemma 5 Let the stabilizing policy π be applied. Then there is a partition PoI =(
Ioa, Iof

)
of the control set I, with Ioa 6= ∅ and partitions of the set Ioa,

{
PiIoa

}
i∈N

={(
Io,ia , Io,if

)}
i∈N

, such that: for any ε > 0 there is

a) a realization ω ∈ Ω,

b) a t large enough,

for which that the following hold

Xi(t)

t
≤ ε,

∣∣∣∣∣
∑F i(I,t)
m=1 1

[
Rim (I) = e

]
F i (I, t)

− wie(I)

∣∣∣∣∣ ≤ ε, I ∈ Io,ia , i ∈ N , (9)

0 ≤ F i(I, t)

W (I, t)
≤ ε, I ∈ Io,if , i ∈ N , (10)

0 ≤ W (I, t)

t
≤ ε, I ∈ Iof , (11)

λi − ε ≤
Ai(t)

t
, i ∈ N . (12)

28 Paschos, Georgiadis and Tassiulas

Proof Consider the set Ω1 of Lemma 4. For any realization belonging to this set,
since limt→∞ F i (I, t) =∞ for I ∈ Io,ia , i ∈ N we have that

lim
t→∞

∑F i(I,t)
m=1 1

[
Rim (I) = e

]
F i (I, t)

= wie(I), I ∈ Io,ia , i ∈ N . (13)

Also, since limt→∞ F i (I, t) <∞ and limt→∞W (I, t) =∞ for I ∈ Io,if , it holds

lim
t→∞

F i(I, t)

W (I, t)
= 0, I ∈ Io,if , i ∈ N (14)

and similarly,

lim
t→∞

W (I, t)

t
= 0, I ∈ Iof . (15)

By the ergodicity of the arrival process,

lim
t→∞

Ai(t)

t
= λi, i ∈ N (16)

Defining the set Ωε(t) as the subset where (9) - (12) hold simultaneously, it follows
from (13)-(16) and Lemma 1 that

lim inf
t→∞

P(Ωε(t) ∩Ω1) = P(Ω1) > 0.

Hence for any fixed V,

lim sup
t→∞

P

∑
j∈N

Xj (t) ≤ V

 ∩Ωε(t) ∩Ω1

 (17)

≥ lim sup
t→∞

P

∑
j∈N

Xj (t) ≤ V


+ P(Ωε(t) ∩Ω1)− 1


= lim sup

t→∞
P

∑
j∈N

Xj (t) ≤ V


+ P(Ω1)− 1, (18)

where the equality follows from Lemma 2.
From Lemma 3 it follows that

lim
V→∞

lim sup
t→∞

P

∑
j∈N

Xj (t) ≤ V

 = 1.

Hence we can pick V large enough so that

lim sup
t→∞

P

∑
j∈N

Xj (t) ≤ V

 ≥ 1− P(Ω1) /2.

For this choice of V it follows from (18) that

lim sup
t→∞

P

∑
j∈N

Xj (t) ≤ V

 ∩Ωε(t) ∩Ω1

 ≥ P(Ω1) /2 > 0.

Scheduling with pairwise XORing 29

Therefore there is a sequence of times tm, with limm→∞ tm =∞ such that

P

∑
j∈N

Xj (tm) ≤ V

 ∩Ωε(tm) ∩Ω1

 > 0. (19)

Picking a tm large enough so that V/tm ≤ ε we conclude from (19) that there is a
realization satisfying all the conditions of the lemma. ut

Proof of Theorem 1 (Necessity): For any ε > 0 and for the corresponding realization
of Lemma 5 define

fεe =
Fe(t)

t
, e ∈ E ,

µεi(I) =
F i(I, t)

W (I, t)
, i ∈ N , I ∈ Iof ,

φε(I) =
W (I, t)

t
.

These quantities are all bounded, specifically,

0 ≤ fεe ≤ max
I∈I

µ̂i(I), e = (i, k),

0 ≤ µεi(I) ≤ max
I∈I

µ̂i(I),

0 ≤ φε(I) ≤ 1.

Moreover, by (5) it holds ∑
I∈I

φε(I) = 1. (20)

It then follows from (6) that for e = (i, k) ∈ E it holds

fεe =
Fe (t)

t

=
∑
I∈Io,ia

W (I, t)

t

F i(I, t)

WI(t)

∑F i(t)
m=1 1

[
Rjm (I) = e

]
F j(I, t)

+
∑
I∈Io,if

W (I, t)

t

∑F i(t)
m=1 1

[
Rjm (I) = e

]
W (I, t)

+
∑
I∈Iof

∑F i(t)
m=1 1

[
Rjm (I) = e

]
t

.

Since
∑F i(I,t)
m=1 1

[
Rjm (I) = e

]
≤ µ̂i(I)W (I, t), using the definitions and the inequal-

ities in Lemma 5 we have

fεe ≤
∑
I∈Io,ia

φε(I)µεi(I)
(
wie(I) + ε

)
+
∑
I∈Io,if

φε(I)ε

+ |I|Mε, (21)

30 Paschos, Georgiadis and Tassiulas

where M = maxI∈I maxi∈N µ̂i(I). Similarly,

fεe ≥
∑
I∈Io,ia

φε(I)µεi(I)
(
wie(I)− ε

)
(22)

and taking into account (7),

λi − ε+
∑
e∈Eiin

fεe −
∑
e∈Eio

fεe ≤ ε. (23)

Consider now the sequence of vectors

V n =
{
f

1/n
e , e ∈ E , φ1/n(I), I ∈ I, µ1/n

i , i ∈ N
}
, n = 1, . . .

This sequence is bounded and hence it contains a convergent subsequence V nk , k =
1, ... Let {fe, e ∈ E , φ(I), I ∈ I, µi} be the limit of this subsequence. Taking limits
in (20), (21)-(23) we see that using this limit sequence shows that {λi}i∈N ∈ C. ut

Appendix II

In this Appendix we give the proof of Theorem 2.

Proof of Theorem 2: Define the following quadratic Lyapunov function

L(X) =
∑
i∈N

X2
i

and the following conditional expectation, called Lyapunov drift

∆X(τ)
.
= E{L(X(τ + 1))− L(X(τ))|X(τ)} .

We would like to show the system is stable under Algorithm 2 whenever the arrival
vector λλλ lies inside the region of Theorem 1. For this, it is enough to show that
the Lyapunov drift is negative whenever the backlogs are large enough, i.e. that
there exist positive constants B, ξ such that for all τ

∆X(τ) ≤ B − ξ
∑
i∈N

Xi(τ),

see [11] and in particular Lemma 4.1. In the same Section of [11], the Lyapunov
drift for the queues of an arbitrary network is bounded above by eq (4.13)

∆X(τ) ≤ 2B|N |+ 2
∑
i∈N

Xi(τ)E{Ai(τ)|X(τ)}

− 2E

∑
i∈N

Xi(τ)

 ∑
k∈N i

o

Fi,k(τ)−
∑

k:i∈Nk
o

Fk,i(τ)

 |X(τ)

 ,

(24)

where Fi,k(τ) is the actual service rate of link (i, k) at time slot τ when Algorithm
2 is in use.

Scheduling with pairwise XORing 31

For each control I ∈ I, consider the quantity

C(I) = max
µi(I)≤µ̂i(I)

∑
i∈N

Xi(τ)−
∑
k∈Eio

w(ik)(I)Xk(τ)

µi(I) = max
µi(I)≤µ̂i(I)

∑
i∈N

Yi(τ, I)µi(I),

where Yi(τ, I) = Xi(τ)−
∑
k∈Ei w(ik)(I)Xk(τ). Note now that for a given control,

the above maximization is attained by

µ?i (I) =

{
µ̂i(I) if Yi(τ, I) > 0
0 if Yi(τ, I) ≤ 0,

i.e. transmitting with full rate from nodes with with positive Yi(τ, I) and trans-
mitting zero from nodes with negative Yi(τ, I). This explains why the algorithm
makes use of the function (.)+ ≡ max [., 0]. Finally, note that Algorithm 2 solves a
second maximization problem at each slot by selecting the control

I∗τ = arg max
I∈I

C(I).

Consider now any point in the interior of the throughput region, denoted by
λ̆λλ. There exist flow variables f ∈ C for which we will have for each node λ̆i + ε ≤∑
k∈Eio

fik −
∑
k:i∈Eko

fki. Also, we have for any τ

∑
i∈N

Xi(τ)

∑
k∈Eio

fik −
∑
k:i∈Eko

fki

=
∑
i∈N

∑
k∈Eio

(Xi(τ)−Xk(τ)) fi,k

=
∑
I∈I

φI
∑
i∈N

∑
k∈Eio

(Xi(τ)−Xk(τ))w(i,k)(I)µi(I)

=
∑
I∈I

φI
∑
i∈N

Xi(τ)−
∑
k∈Eio

Xk(τ)w(i,k)(I)

µi(I)

≤
∑
I∈I

φIC(I) ≤
∑
I∈I

φIC(I∗τ)

=
∑
i∈N

∑
k∈Eio

(Xi(τ)−Xk(τ))w(i,k)(I
∗
τ)µ?i (I

∗
τ)

=
∑
i∈N

∑
k∈Eio

(Xi(τ)−Xk(τ)) E
{
Fi,k(τ, I∗τ)|X(τ)

}
,

where I∗τ is the control selected by Algorithm 2 at time slot τ and the equality
below the second inequality follows from the fact that Algorithm 2 is designed
exactly to maximize this term at each time slot. Now we can elaborate (24):

32 Paschos, Georgiadis and Tassiulas

∆X(τ)≤ 2B|N |+2
∑
i∈N

Xi(τ)λi − 2
∑
i∈N

Xi(τ)E

∑
k∈N i

o

Fi,k(τ)−
∑

k:i∈Nk
o

Fk,i(τ)|X(τ)


= 2B|N |+ 2

∑
i∈N

Xi(τ)λi − 2
∑
i∈N

∑
k∈Eio

(Xi(τ)−Xk(τ)) E
{
Fi,k(τ, I∗τ)|X(τ)

}

≤ 2B|N |+ 2
∑
i∈N

Xi(τ)λi − 2
∑
i∈N

Xi(τ)

∑
k∈Eio

fik −
∑
k:i∈Eko

fki


= 2B|N | − 2

∑
i∈N

Xi(τ)

∑
k∈Eio

fik −
∑
k:i∈Eko

fki − λi

 ≤ 2B|N | − 2ε
∑
i∈N

Xi(τ),

where the second inequality comes from the aforementioned derivation and the
third inequality comes from the fact that the point λ̆λλ is selected in the interior
of the throughput region. Thus, we have shown that whenever the backlogs are
large enough, Algorithm 1 guarantees a negative drift which brings the system to
stability as long as the vector λλλ is in the interior of the throughput region. ut

Appendix III - More controls

In this subsection we examine closer the control that sends encoded packets (results
of XOR operations of packet pairs belonging to two queues). Under this control,
if queues a and b are selected, m packet pairs from the queues are transmitted in
a slot by using “dummy” packets if necessary to form these pairs. In this case an
inefficiency seems to arise as indicated by the following example. Suppose that the
control selects to perform XOR operation of 10 packets, queue a has 20 queued
packets and queue b 3 packets. Then according to the control specified, 10 packet
pairs will be XORed by using 7 “dummy” packets from queue b. However, it
would have been more efficient to send 3 pairs of XORed packets, without using
any dummy packets, and then transmit 7 uncoded packets from queue a. Since this
type of control is not included in the controls specified in the previous Sections, the
question arises whether one can do better by introducing more detailed controls.
Below we show that this is not the case.

Let us extend the available controls by adding the following ones. If it is de-
cided to transmit packets belonging to both of the queues a and b, then a control
I(a, b, lo, la, lb) may be selected, where l0, la, lb are nonnegative integers with the
following interpretation. Let ra ≥ rb. Then at most l0 XORed packets may be
transmitted and at most lx, x = a or b uncoded packets may be transmitted from
each of the queues. The l0 + lb packets must be seen by user b and hence they need
to be transmitted at rate rb. On the other hand the la packets need to be seen
only by user a and hence they can be transmitted at the higher rate ra. Since all
these packets must be transmitted within a time slot, it must hold

l0 + lb
rb

+
la
ra
≤ 1 (25)

This type of controls covers the case described in the example above. The controls
corresponding to transmission from one of the queues remain the same.

Scheduling with pairwise XORing 33

The model used in the previous Sections can be extended to cover the case
when this extended set of controls is chosen. The resulting stabilizing policy in
this case is similar to the one described in Section 6. Specifically, at time t a
reward C(I) is specified for each control, the reward depending on queue sizes at
time t, and then the control whose reward is maximized is selected for slot (t, t+1].
The reward for a control I(a, b, lo, la, lb) is given by

C(I) =

 ∑
i∈{a,b}

Xi(t)− ∑
k∈Eio

Xk(t)wl(i,k)(I)

+ l0 +Xa(t)la +Xb(t)lb. (26)

Let now c0, ca, cb be the coefficients multiplying l0, la, lb in (26). Consider all
controls I(a, b, lo, la, lb) where a, b are fixed. If c0 = max {c0, ca, cb} then among
all these controls those that set lb = 0 dominate. For the latter class of controls
the reward becomes

C(I) = c0l0 + cala.

Taking into account (25) we have

C(I) ≤
(
c0 − ca

ra
rb

)
l0 + cara.

Hence, if

c0 > ca
ra
rb
,

then the control with l0 = rb, la = lb = 0 dominates. If on the other hand c0 ≤
cara/rb then the control l0 = 0, la = ra, lb = 0 dominates. In either case we obtain
one of the admissible controls of the policy defined in Section 6. In a similar fashion
it can be shown that the cases cb = max {c0, ca, cb} or ca = max {c0, ca, cb} result
in one of the admissible controls of the policy defined in Section 6.

We see from the discussion above, that under the new extended set of controls,
the policy specified in Section 6 will still be optimal.

Appendix IV - Beyond pairwise XOR

To provide some intuition as to why extensions are needed for the case where |P| >
2, we briefly explain here an example with three combined packets. If only partial
state feedback is given, the virtual network that captures all state transitions
might contain infinite number of nodes. Consider three packets from different flows
which are combined together. Then assume that the scheduler receives a NACK
from destination 1 and 2 and an ACK from 3. This means that both destination
nodes 1,(2) did not correctly decode the packet, but this could be either because
packet 2 (1) was not correctly overheard or packet 3 was not correctly overheard.
To capture both cases, none of the packets can be characterized as bad; instead,
the relay can now estimate new overhearing probabilities. A new state is required
to capture this new partial knowledge of the scheduler thus obtained. Repeating
this process, we see that in order to capture all the partial knowledge that the
relay may have in the construction of the virtual network, we need to introduce
infinite number of nodes. This introduces new technical challenges and extensions
to the approach used in this paper.

