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Abstract—We investigate on the scalability of multihop wireless
communications, a major concern in networking, for the case
that users access content replicated across the nodes. In contrast
to the standard paradigm of randomly selected communicating
pairs, content replication is efficient for certain regimes of file
popularity, cache and network size. Our study begins with the
detailed joint content replication and delivery problem on a
2D square grid, a hard combinatorial optimization. This is
reduced to a simpler problem based on replication density, whose
performance is of the same order as the original. Assuming a
Zipf popularity law, and letting the size of content and network
both go to infinity, we identify the scaling laws and regimes of
the required link capacity, ranging from O

(√
N
)

down to O(1).

Index Terms—Asymptotic laws, scaling laws, capacity, network
sustainability, content distribution wireless networks, Zipf law,
cooperative caching, multihop wireless networks.

I. INTRODUCTION

Content-Based Networking is a novel architecture, key for
the future Internet: in this paradigm, data requests are placed
on content, as opposed to a network address, and routes are
formed based on content provision and user interest [2]. In this
context, caching is a salient technique that improves the user
Quality of Service and network performance through content
replication across the network by exploiting the temporal and
spatial vicinity of user requests. Its merits have been demon-
strated in various networking paradigms, such as Content
Delivery, Publish-Subscribe and Peer-to-Peer Networks.

Another major technology for future networks is wireless
communications, as it enables the ubiquitous data access for
mobile users. Unfortunately, long multihop communications
are known not to scale [3], i.e., the maximum common rate
for all flows is inversely proportional to the average number of
hops. Considering the volatility of wireless communications
and the associated bottlenecks, it becomes quite important
to investigate on the performance benefits of caching and its
effect on the sustainability of networks expanding in size.

To this end, we begin our study with a review of past and
related work in Section II, and then proceed to the body of
this work, where we make the following contributions:

1) We formulate the optimization of content replication
jointly with routing for minimizing the required wireless
link capacity (Section III), a hard combinatorial problem
that looks at the detailed delivery routes and the cache
content at each node; this is step-by-step reduced to

2) a simple and mathematically tractable problem, whose
scope spans only the frequency of the replicated content

Part of this work has been appeared in the INFOCOM 2012 conference [1].

(Section IV), a macroscopic quantity;
3) an efficient solution, including an actual simple repli-

cation scheme, is designed, and is shown to be order
efficient to the optimal solutions of both problems;

4) the asymptotic laws of the required link capacity when
the network and content (number of nodes and files) both
scale to infinity are computed in Section V. Link capac-
ity ranges from Θ

(√
N
)

, the non-sustainable regime of
[3], down to Θ(1), a perfectly sustainable regime where
system performance is not affected by the network size.

5) The precise conditions on the content volume vs. the
network size, the cache size and the content popularity
so that caching does make a difference in the system per-
formance and scalability are summarized in Section V-F.

Last, we recapitulate on the assumptions of this study and
its possible extensions in Section VI. Next, we present the
asymptotic notation used throughout this study.

A. Asymptotic Notation

Let f and g be real functions. Then, f ∈ o(g) if

for any k > 0, there exists x0 s. t. for x ≥ x0,

∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ k.
Although o(g) defines a set of functions, it is customary to
write f = o(g) slightly abusing notation, instead of f ∈ o(g).

Similarly, f = O(g), if there exists a k > 0 such that f(x)
is eventually, in absolute value, less or equal to kg(x), that is

there exist k > 0, x0 > 0 s. t. for x ≥ x0,

∣∣∣∣f(x)

g(x)

∣∣∣∣ ≤ k.
Using such a k, we can write that f

lim

≤ kg and f
lim

< k′g, if
f, g are positive functions and k′ > k.

Reversing the inequalities in the above definitions, i.e.,
|f(x)/g(x)| ≥ k, we get that f = ω(g), or f = Ω(g); using

such a k, f
lim

≥ kg and f
lim

> k′g, for positive f, g and k′ < k.

In the case that f
lim

≤ g and f
lim

≥ g, we write that f ∼ g.
Last, f = Θ (g) if f = Ω(g) and f = O(g).

An important consequence of the above is that f = O(g)

does not imply f
lim

< g—e.g., consider f(x) = 2g(x); however,
the reverse is true. Moreover, if f

lim

< g, then g − f = Θ(g).

II. PROBLEM BACKGROUND & RELATED WORK

Consider a wireless network of N nodes, randomly placed
in a region, which exchange data using multihop communi-
cations. Then, the maximum throughput per node scales as
O(1/

√
N) on node number N [3]. This celebrated result states
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that per-user throughput will eventually decline to zero as the
network expands, and is thus pessimistic about the scalability
of wireless networks. What stands behind is the assumed
uniform matrix for the generation of traffic that leads to the
average communicating pair distance rising as Θ

(√
N
)

.
This work stimulated a series of follow-up studies in scaling

laws, e.g., [4]–[10], in novel service types, communication
schemes, and topologies. For example, [4] investigates on non-
uniform transfer matrices, identifying laws for various types of
flows, such as asymmetric and multicast. Even if the network is
aided by infrastructure, to overcome the 1/

√
N law, quite many

base stations Ω
(√
N
)

are required [5]. On the other hand,
novel cooperative transmission schemes have been proposed
[6], [7], [9], still hardly avoiding the 1/

√
N law. In fact, the

limitation was shown to be of geometrical nature [11], and,
thus, organically linked to Maxwell’s electromagnetic theory.

In this work (and [1], an earlier version), we focus on nodes
generating requests on particular content, in lieue of specific
destinations. This is a major shift, as content may be cached
in multiple locations over the network; hence, the requests can
potentially be served from nodes close to their origin.

Caching is a technique well-known to improve performance
in many computing domains. In wireless networks, perfor-
mance benefits can be realized from the hop reduction [12].
In the Publish-Subscribe paradigm, caching helps preserve in-
formation spatio-temporally and shield against link breakages
and mobility [13]. In wireless meshes, cooperative caching can
improve performance by means of implementation [14].

The benefits of caching in large wireless networks have been
studied in [15] from a different perspective than ours. First,
[15] investigates on the paradigm of cooperative transmissions,
which leads to delivery schemes different than shortest path
routes. Specifically, the network can become approximately
sustainable by the means of an hierarchical tree structure of
transmissions over arbitrarily long links (as in [7]). As in [6],
the scaling laws depend on the signal attenuation parameters.
Equally important, [15] assumes an arbitrary traffic matrix.
Last, the cache contents are input parameters, whereas, here
(and in [12]), replication is a key optimization argument.

In this study, we consider a square grid topology for the
wireless network, with traffic requests symmetric on their
origin to content randomly selected according to the Zipf
Law. Although our topology, and approach in general, is more
specific than [15], it aims to identify closed form laws and shed
light on whether caching can make the system sustainable.

Regarding the choice of the Zipf Law, there is ample
evidence that content popularity in the Internet follows such a
power law [16]–[21]. The Zipf parameter ranges from 0.5 [18]
to 3 [19] depending on the application: low values are typical
in routers, intermediate values in proxies and higher values in
mobile applications [20], [21]—see also the references therein.

III. BASIC DEFINITIONS AND THE GENERAL PROBLEM

A. Square Grid Wireless Network Model

Let N be the square of an integer; assume N identical peers,
indexed by n ∈ N , {1, 2, . . . , N}, and arranged on a square
grid on the plane of

√
N rows times

√
N columns. Each peer

is connected to its four neighbors adjacent on the same row
or column with non-directed non-interfering links. By keeping
the node density fixed and increasing the network size N , we
obtain a network scaling similar to [3]. To avoid boundary
effects, we consider a toroidal structure as in [22].

Unlike many previous works (except [23]), this topology is
not random; however, it has been considered in the past to
study the capacity of wireless networks,1 e.g., [23]. Unless
nodes coordinate transmissions in complex schemes (e.g., [6],
[15]), the symmetric links to the four immediate neighbors cor-
responds to a simple and reasonable communications scheme:
the communication range is limited due to attenuation and
interference. Using, then, a frequency reuse factor appropriate
to the physical layer (or TDMA, or random access at the MAC
layer), the network layer is abstracted to the lattice.

Admittedly, long links are possible in wireless communi-
cations, however, their capacity is quite low. Links of diverse
length (and hence capacity) have been considered in the past
(as in [3]), but they turn out not to affect the capacity scaling.2

In fact, it was shown that it is advantageous to communicate
with nearby neighbors and use multi-hop communications
to reach distant nodes, which results in a network diameter
scaling as

√
N . These are the essential elements of wireless

networks that the square grid topology perfectly captures.
Equally important, the derived results validate the suitability

of the lattice topology, too. When the content is almost
uniquely stored across the network, a setup that is equivalent to
the random communicating pairs of [3], our analysis produces
the celebrated O(1/

√
N) law (more on this in Section V-F).

In any case, the regular placement of homogeneous nodes
is an extreme case for a wireless network that serves as a per-
formance bound (more in Section VI). These quite important
features enable computing closed-form solutions and scaling
laws similar to Θ(1/

√
N), our main target here. Studies based

on non-uniformity assumptions are complementary approaches
and lead to multidimensional capacity regions (as in [15]).

B. Files, Caching and Data Delivery

The nodes (or users located therein) generate requests to
access files/data, indexed by m ∈ M , {1, 2, . . . ,M}. Each
node n is equipped with a cache/buffer, whose contents are
denoted by the set Bn, a subset of M. If a request at node n
is for a file m that lies in Bn, then it is served locally. Due
to the limited buffer capacity, this will often be not the case,
thus, node n will have to request m over the network from
some node w that keeps m in its cache. Let, Wm ⊆ N be the
set of nodes that maintain m in their caches.

Let K be the storage capacity of nodes’ cache, measured
in the number of unit-sized files it can buffer. This sets a
constraint on the cardinality of cache contents |Bn| ≤ K.
The generalization to variable-sized files can be still captured

1As a side note, the grid topology does not apply to real wired networks.
Connectivity in the Internet is highly diverse, following power laws: few nodes
are connected to many nodes, whereas the majority have links only to few
nodes; thus network diameter scales as logN [24].

2The treatment of [3] becomes much simpler if we organize the nodes into
square cells, adopt a TDMA scheme, and limit communication between nodes
in the same or adjacent cells [4]. Such setup closely resembles the square grid.
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by splitting each file into unit segments, and then treating its
segments as separate files, cached independently of each other.

In order for the problem of replication not to be trivial, it
should be K < M , i.e., each node has to select which files to
cache. Moreover, for the network to have sufficient memory
to store each file at least once, it has to be

KN ≥M. (1)

Assume, then, that nodes generate requests for data at a rate
of λ, common to all nodes. Let each request be independent
from all other requests in the network, and directed to a
particular file m ∈ M, depending on the file m’s popularity
pm, or in other words, the probability of a request for file
m. Under the homogeneity assumption, distribution [pm] is
common to all nodes. Moreover, we assume that it does not
change with time; this permits to seek static in time cache
allocations [Bn], and ignore the cache initialization overhead,
as discussed in Section VI. Clearly, the replication is governed
by the content popularity: to minimize the network traffic,
popular files should be stored densely in the network.

Data delivery follows the standard unicast paradigm. A
multicast-like strategy (i.e., combine the delivery of requests
to the same file in a neighborhood to reduce link traffic)
would require non-trivial coordination among nodes in joining
the asynchronous requests and enabling efficient multicast
delivery, thus, it falls out of the scope of this work.

C. General Replication-Routing Problem

In the set context, the optimization goal regards minimizing
the link capacity required to sustain the request arrival process.
Let C` be the rate of traffic carried by link `; the network is
stable, only if the capacity of every link ` exceeds C`.

In the primary formulation of the problem, we focus on the
worst link case, i.e., the most loaded link, max` C`. Next, we
relax to the average traffic over the links, avg` C`. In both
setups, the replication problem regards finding the cache Bn
at all nodes n, that minimizes maxC` or avg` C`, respectively.

The individual node capacity constraint of the primary
formulation is expressed through |Bn| ≤ K, for all n ∈ N .
Again, we also consider a relaxation, the total capacity con-
straint:

∑
n |Bn| ≤ KN . This corresponds to a network whose

overall cache capacity KN can be freely allocated over the
nodes. In any case, each file should be stored at least once in
the network, hence it should be ∪n∈NBn =M.

Allowing for receiver driven anycast strategy to route file
access requests (delivery is unicast), the network should
choose a node wm,n to serve the requests of client n on m;
wm,n should be selected among the candidates of set Wm.
Therefore, the replication problem is implicitly linked to a
joint delivery problem of finding appropriate paths of adjacent
nodes n, v1, v2, . . . , vk from each client n to a node vk ∈ Wm

for each file m, that minimize maxC` or avg` C`.
Given that there exist multiple routes between a node n and

the caches of Wm that contain m, we should allow splitting
the traffic among them to balance the load on the implicated
links. Then, the delivery problem regards finding a set of routes

Rn,m = {Rn,m,i} = {[rn,mi ; vn,mi1 , vn,mi2 , . . . , vn,mik ]}

from each client node v to a server node vn,mik ∈ Wm. On each
route Rn,m,i, rn,mi denotes the portion of requests of node n
for file m that use path n, vn,mi1 , vn,mi2 , . . . , vn,mik . Thus, it is∑
i r
n,m
i = 1. Given the routes [Rn,m], it is easy to sum up

the unicast traffic C` per link l. The associated computation,
however, is carried out in next sections.

Based on the above, we define three variants of the
replication-delivery problem (Table II), beginning with the
primary (and hardest) one, followed by its relaxations.

PROBLEM 1 [WORST LINK NODE CAPACITY (WN)]:

Minimize max` C`([Bn], [Rn,m]), subject to (2), (4-8).

PROBLEM 2 [AVERAGE LINK NODE CAPACITY (AN)]:

Minimize avg` C`([Bn], [Rn,m]), subject to (2), (4-8).

PROBLEM 3 [AVERAGE LINK TOTAL CACHE (AT)]:

Minimize avg` C`([Bn], [Rn,m]), subject to (3), (4-8).

As shown in Table II, we use ? to denote the optimal value
of the objective function, and one of the minimizing pairs
of the cache contents and routes (as multiple ones may exist).
Note that we omit the parameters [pm], [λ] and cache capacity
K from the argument list to ease the notation.

It is clear that these problems involve searching over com-
binatorial buffer configurations, and thus are not amenable to
an easy to compute, closed-form solution. However, as we are
interested in asymptotic laws, we will use the simpler structure
of the latter problems to design straightforward replication
strategies, and compute an approximation for the former whose
performance is within a constant to the optimal.

First, observe that the WN and AN problems share the same
constraints. Hence, [BWN?n ], [RWN?

n,m] is feasible for AN. Given
that max` C` ≥ avg` C` for any [Bn], [Rn,m], it follows that

CWN? ≥ avg` C`([BWN?n ], [RWN?
n,m]) ≥ CAN?.

Second, the AT problem has relaxed constraints in compar-
ison to AN (i.e., any ([Bn,Rn,m]) of AN satisfies AT, too),
and both problems share a common objective function. Thus,

CAN? = CAT([BAN?n ], [RAN?
n,m]) ≥ CAT?.

LEMMA 1 [WN VS. AN VS. AT]: CWN? ≥ CAN? ≥ CAT?.

Observe that the shortest paths suffice for the AN and AT
problems. Indeed, consider a route [rn,mi ; vn,mi1 , . . . , vn,miki,n,m ]
in set Rn,m for some n,m involving more hops than a path
[n, v1, . . . , vk] with m ∈ Bvk . Clearly, the total link load can
be reduced if we replace this route by the shorter path in the
route set (or, if the shorter path is already in Rn,m, we sum
the route probabilities). Hence, we have shown the following:

LEMMA 2 [AN-AT SHORTEST PATH OPTIMALITY]: The
optimal routes RAN?

n,m,RAT?
n,m consist of shortest paths only.

In the case that there exist multiple paths from a source n
to a file m with the same hop count, we are free to arbitrarily
distribute traffic among them. Let, therefore, h(n,m) denote
the hop-count of a shortest path between node n and file m
(i.e., a node in Wm). Assuming, for simplicity, a unit request
rate per node λ = 1, and summing over all n,m, we get that
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TABLE I
LIST OF SYMBOLS USED IN SECTION III.

Symbol Definition Symbol
Set of Set

allowed values Cardinality

Node n N N , 4ν

Alternate Node notation (x, y) {1, . . . , N
1
2−1}2 N

File/Data m M M

Buffer/Cache contents Bn See Table II

Path (with use probability) [r; v1, . . . , vk]

Set of Routes Rn,m,i
{[
rn,mi ; vn,mi1 , . . . , vn,miki,n,m

]}
from node n to file m

Route Rn,m,i probability rn,mi (0, 1]

Node maintaining
wm Wm Wmfile m in its cache

Node that serves client
wm,n Wm Wmnode n’s requests on m

Nodes served by node w
n Qw,m Qw,mon their requests of m

Hop count from node n
h(n,m) {0, 1, 2, . . . }to the serving node(s) Wm

Density of data m dm
[

1
N
, 1
]

Canonical density of data m d◦m
{

1
N
, 4
N
, . . . , 1

}
1 + ν

Logarithm of can. density ν◦m , − log4 d
◦
m {0, 1, . . . , ν} 1 + ν

TABLE II
LIST OF JOINT REPLICATION/DELIVERY PROBLEMS.

Problem:
Worst Link Average Link Average Link
Node Capa- Node Capa- Total Capa-
city (WN) city (AN) city (AT)

Objective minCWN minCAN minCAT

Cost
Function

CWN,max
`
C` CAN = CAT , avg

`
C`

Optimization
Variables

[Bn], [Rn,m]

with Rn,m =
{[
rn,mi ; vn,mi1 , . . . , vn,miki,n,m

]}
Constraints
on Buffer
Contents

[Bn]:

For all n ∈ N , |Bn|≤K (2)
∑
n∈N
|Bn|≤KN (3)

For all n ∈ N ,Bn ⊆M (4)

∪
n∈N

Bn =M (5)

Constraints
on Routes
[Rn,m]:

For all n,m, i : n, vn,mi1 , vn,mi2 , . . . , vn,miki,n,m (6)
is a list of adjacent nodes

For all n,m, i : Bn,mviki,n,m 3 m (7)

For all n,m :
∑
i

rn,mi = 1 (8)

Opt. Value,
Arguments

CWN? CAN? CAT?

BWN?n ,RWN?
n,m BAN?n ,RAN?

n,m BAT?n ,RAT?
n,m

∑
`

C` =
∑
n∈N

∑
m∈M

h(n,m)pm. (9)

Indeed, (9) expresses the total load on the network: the LHS
expresses it as the sum over all links, while the RHS expresses
it as the load generated by each file request of each node.

IV. DENSITY-BASED FORMULATIONS

The above formulation takes a microscopic view on the
precise routes and specific cache contents. The macroscopic
view that follows narrows down to the frequency of occurrence
of each file in the nodes that leads to an easy-to-solve problem,
and, eventually, to the computation of the asymptotic link rate.

A. Replication Density and Hop-Count Approximation

Let us define the replication density dm as the fraction of
nodes that store file m in the network:

dm =
1

N

∑
n∈N

1{m∈Bn}. (10)

Under shortest path routing, the inverse of replication den-
sity dm may be regarded in a fluid approximation as the
number of peers Qw,m served by the node wm that maintains
m in its cache; hence, it also represents the size of the area
served by a specific location as the source of information m.

Note that in the AT and previous problems,∑
m∈M

dm =
1

N

∑
n∈N
|Bn| ≤

1

N

∑
n∈N

K = K,

with dm taking values in the discrete set {1/N, 2/N, . . . , 1}.
Consider now the densities [dAT?m ] that arise from the optimal

cache [BAT?n ] via (10). The following useful result (see Ap-
pendix A for the proof of all results of this Section) naturally
leads to a new, density-based problem formulation:

LEMMA 3 [AT CAPACITY LOWER BOUND]:

CAT? ≥
√

2

6

∑
m∈M

(√
1

dAT?m
− 1

)
pm.

PROBLEM 4 [CONTINUOUS DENSITY (CD)]: Minimize

CCD([dm]) ,

√
2

6

∑
m∈M

[
1√
dm
− 1

]
pm,

with respect to [dm], subject to:
1) For any m ∈M, 1

N ≤ dm ≤ 1,
2)
∑
m∈M dm ≤ K.

In the CD Problem, the optimization variables are the
densities dm, which express the fraction of caches containing
file m. In the objective, d−

1
2

m − 1 approximates the average
hop count from a random node to a cache containing m (with
a multiplicative constant). Weighted by the content popularity
pm, the summation expresses the average link load per request.

Note that the 1/N ≤ dm ≤ 1 constraints are an important
difference from [12], which affects decisively the asymptotics.

Clearly, a [Bn] that satisfies the WN, AN or AT constraints
yields a density vector [dm] valid for CD. Thus,

THEOREM 4 [CD BOUND]: CCD? ≤ CAT? ≤ CAN? ≤ CWN?.

B. CD Problem Solution

CD Problem’s solution is easy to find using the Karush-
Kuhn-Tucker (KKT) conditions, and, moreover, is unique:

LEMMA 5 [CD CONVEXITY]: CD is a strictly convex opti-
mization problem, and has a unique optimal solution.

For the non-trivial case of K < M , the capacity constraint
is satisfied as an equality. As for the pair of constraints on
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Fig. 1. An example case of density dm and theM?

�

,M?
�

andM?

� partitions.

Solid line plots the ∼ m−
2τ
3 law of m ∈M?

�
, when pm follows Zipf’s law.

each dm, either one of them can be an equality, or none. This
partitionsM into three subsets, the ‘up-truncated’M

�

= {m :
dm = 1} of the files stored at all nodes (i.e., density truncated
above), the ‘down-truncated’ M� = {m : dm = 1/N} of the
files stored in one node (i.e., density truncated below), and
the complementary ‘non-truncated’ M

�
= M \ (M

�

∪M� )
of non-truncated density dm ∈ (1/N, 1), ordered as follows:

LEMMA 6 [MONOTONICITY OF SETS M

�

,M
�
,M� ]: Pro-

vided that pm is non-increasing on m, the optimal solution
for the CD problem takes the form of M

�

= {1, 2, . . . , l− 1},
M

�
= {l, l + 1, . . . , r − 1}, and M� = {r, r + 2, . . . ,M},

where l and r are integers with 1 ≤ l ≤ r ≤M + 1.

The uniqueness of the optimal solution [dCD?m ] implies the
uniqueness of the indices and the three partitions. Using the
? notation for their optimal values, dCD?m is expressed by

dCD?m =


1, m ∈M?

�

, (11a)
K − l? + 1− M−r?+1

N∑r?−1
j=l? p

2
3
j

p
2
3
m, m ∈M?

�
, (11b)

1

N
, m ∈M?

� . (11c)

Fig. 1 illustrates such an example solution, depicting the
density dCD?m , indices l? and r?, as well as setsM?

�

,M?
�
,M?

�

when file popularities follow the Zipf law (see Section V-A).
Note that the solution of [12] follows (11b), allowing dm

to breach the bounds of 1/N and 1, due to their average node
density assumption (as opposed to our discrete node grid).

C. Discrete Density Formulation

Now, we restrict our attention to networks with a number
of nodes equal to a power of 4, N = 4ν , and consider another
version of the CD Problem constrained on discrete densities:

PROBLEM 5 [DISCRETE DENSITY (DD)]: Minimize
CDD([dm]) , CCD([dm]) with respect to [dm], subject to:

1) For any m ∈M, dm = 4−νm , with νm ∈ {0, 1, . . . , ν}.
2)
∑
m∈M dm ≤ K.

As CD is a relaxed version of the DD Problem (a [dm]
satisfying DD constraints, satisfies CD, too), CCD? ≤ CDD?.

Although DD is not easy to solve, an efficient solution is
constructed by down-truncating dCD?m to a negative power of 4:

d◦m , max
{

4−k : 4−k ≤ dCD?m , k ∈ {0, 1, . . . , ν}
}
. (12)

Let CCD◦ , CCD([d◦m]). Solution [d◦m] produces an order-
optimal canonical placement of files (see next, Algorithm 1):

THEOREM 7 [CANONICAL PLACEMENT EFFICIENCY]:

CCD? ≤ CCD◦ < 2CCD? +
√

2/6.

D. Replication Policy Design: Canonical Placement
Let us present an algorithm that allocates the files in

the caches given the replication densities d◦m. Each node
n is represented by its coordinates (x, y), taking values in
{0, 1, . . . ,

√
N − 1}2. The input of the algorithm are the sets

M0,M1, . . . ,Mν , which partition the files according to their
densities d◦m:Mk contains the files m of d◦m = 4−k. Viewing
the network as a

√
N ×

√
N matrix, we can establish ν

different partitionings into submatrices of size 2k × 2k, for
k = 1, . . . , ν. Then, each file m gets canonically placed
at a unique node of each 2ν

◦
m × 2ν

◦
m submatrix, producing

N/dm = 4ν−ν
◦
m replicas over the network.

Algorithm 1 [Cache Data Filling—Canonical Placement]:

Require: B(x,y) are initially empty sets
1: for k ∈ {1, 2, . . . , ν} do
2: while Mk is not empty do
3: m← arg max

m∈Mk

pm. // Pick the file m of highest pm

4: Mk ←Mk \ {m}. // Remove it from set Mk

5: S ← arg min
(x,y)∈{0,1,...,2k−1}2

|B(x,y)|. // Find the set of

nodes (x, y) with the minimum number of elements
6: Select node (x, y) from S as the first node by

scanning from top left to bottom right the main
diagonal, then next diagonal, etc with wrap around
in the 2k × 2k submatrix. // See Fig. 2

7: for i = 0, 1, . . . , 2ν−k − 1 do
8: for j = 0, 1, . . . , 2ν−k − 1 do
9: B(x+i2k,y+j2k) ← B(x+i2k,y+j2k) ∪ {m} //

Canonical placement of the 4ν−ν
◦
m replicas

10: for x = 0, 1, . . . , 2ν − 1 do
11: for y = 0, 1, . . . , 2ν − 1 do
12: B(x,y) ← B(x,y)∪M0 // PutM0 ≡M

�

in all nodes

Let B◦n = B◦(x,y) denote the contents of cache (x, y) at the
end of the Algorithm 1. In the main loop of step 1, we scan the
sets Mk for k = 1, 2, . . . , ν − 1, and allocate their elements
to the buffers. Last, in step 12, the elements ofM0 that are to
be replicated at every node are added in every cache B◦(x,y) .

In particular, for each k = 1, 2 . . . , ν − 1, in step 2, we
iteratively take out ofMk files at decreasing popularity, and, at
the end of the loop (step 9) put replicas in canonical placement
every 2ν

◦
m hops across each axis, as shown in Fig. 3, for a total

of 4ν−ν
◦
m = N/d◦m replicas (e.g., the 16 replicas of file 3 are

placed every 2 nodes, as ν◦3 = 1). The intervening steps select
the node (x, y) to place the replicas in each 2k×2k submatrix
so as to balance the load in the links; although irrelevant for
the AN and AT problems, in the WN problem, it is paramount.
Specifically, in each 2k × 2k submatrix, we select the node(s)
with the least number of files (step 5); ties are resolved through
diagonal scanning (step 6) in the order of Fig. 2.
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1 (2k−1)2k+2 (2k−2)2k+3 · · · 2·2k−1 2·2k
2k+1 2 (2k−1)2k+3 · · · 3·2k−1 3·2k
2·2k+1 2k+2 3 · · · 4·2k−1 4·2k...

...
... . . .

...
...

(2k−2)2k+1 (2k−3)2k+2 (2k−4)2k+3 · · · 2k−1 4k

(2k−1)2k+1 (2k−2)2k+2 (2k−3)2k+3 · · · 2·2k−1 2k


Fig. 2. The order of precedence in the 2k×2k matrix (Algorithm 1, step 6).

 1,8 6,L 1,I 5,F 1,8 6,L 1,I 5,F

3,C 2,9 3,M 2,J 3,C 2,9 3,M 2,J

1,G 4,D 1,A 7,P 1,G 4,D 1,A 7,O

3,K 2,H 3,E 2,B 3,K 2,H 3,E 2,B

1,8 6,L 1,I 5,F 1,8 6,L 1,I 5,F

3,C 2,9 3,M 2,J 3,C 2,9 3,M 2,J

1,G 4,D 1,A 7,N 1,G 4,D 1,A 7

3,K 2,H 3,E 2,B 3,K 2,H 3,E 2,B
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
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···
···
···
···
···
···
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···
···
···
···
···
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····································································································································································
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···································································································································································

···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···

·················································································

···
···
···
···
···
···
···
···
···
···
···
···
···
··

·········································

Fig. 3. An example run of Algorithm 1 for N = 64, K = 2 and M0 =
{},M1 = {1, 2, 3},M2 = {4, . . . , 9,A, . . . ,M},M3 = {N,O,P}.
Dotted lines show the 2k×2k submatrices where the search of steps 5 and 6
is carried out on for k = 1, 2, 3. The contents of the buffers are shown in
two instances (i) in an intermediate step (in heavy type), when all the replicas
of files {1, . . . , 6} have been placed in the buffers, and, at the end (normal
and heavy type) after placing the replicas of all files . Note that a node at the
south right corner is left with an empty space at the end of the algorithm.

E. Routing, Validity and Optimality for AN and WN Problem

To complete the solution, we specify the delivery scheme.
Specifically, we use shortest paths [R◦n,m] (see Fig. 4 in
Appendix A), which are optimal for the AN problem:
• In the case that there are multiple wm nodes at the

same hop-count from node n, requests of n about m are
directed to node wm at the north and/or west of node n.

• If n and wm are on the same row or column of the
network, we use the single I-shaped shortest path.

• If n and wm are on different rows and columns of the
network, we use equally the two L-shaped shortest paths.

Let CAN◦ , CAN([B◦n], [R◦n,m]), CWN◦ , CWN([B◦n], [R◦n,m]),

Ai,j ,

{
1

K−i− j
N

∑M−j
k=i+1 p

2/3
k , if K − i− j

N > 0,

1, if K − i− j
N = 0,

(13)

The following results establish the validity w.r.t. cache
capacities, as well as the order-optimality of the solution:

LEMMA 8 [ALGORITHM 1 VALIDITY]: |B◦n| ≤ K.

THEOREM 9 [ALGORITHM 1 OPTIMALITY ON AN]:

CAN? ≤ CAN◦ ≤ 1

2
+

3

2

√
2CAN?.

THEOREM 10 [ALGORITHM 1 OPTIMALITY ON WN]: The
maximum link load CWN◦ is within a multiplicative constant to
the optimal CWN? plus an additive term 3+A0,0, that depends
on the distribution [pm], and cache capacity K.

V. ASYMPTOTIC LAWS FOR ZIPF POPULARITY

To study the scaling of the link rates, we switch from
the arbitrary popularity considered so far to the Zip law that
models well the Internet traffic. For simplicity, we drop the ?
notation, and use dm, l and r to refer to the optimal solution.

A. Zipf Law and Approximations

The Zipf distribution is defined as follows:

pm =
1

Hτ (M)
m−τ . (14)

The law parameter τ adjusts the rate of popularity decline as
m increases. Hτ (n) ,

∑n
j=1 j

−τ is the truncated (at n) zeta
function evaluated at τ , a.k.a. the nth τ -order generalized har-
monic number. The limit Hτ , lim

n→∞
Hτ (n) is the Riemann

zeta function, which converges when τ > 1. We approximate
Hτ (n) by bounding the sum: for n ≥ m ≥ 0,∫ n

m

(x+ 1)−τdx ≤ Hτ (n)−Hτ (m) ≤ 1 +

∫ n

m+1

x−τdx,⇒{
(n+1)1−τ−(m+1)1−τ

1−τ ≤Hτ (n)−Hτ (m)≤ n1−τ−(m+1)1−τ

1−τ +1, if τ 6=1,

ln n+1
m+1 ≤Hτ (n)−Hτ (m)≤ ln n+1

m+2 , if τ=1.

(15)

As we are interested in the scaling of the link rates, we
define C as the objective function of the CD Problem without
the multiplicative factor. Substituting the solution (11) and
plugging in the Zipf distribution into (16), it follows that

C ,
∑
m∈M

(
d
− 1

2
m − 1

)
pm = C

�
+ C� −

M∑
j=l

pm, (16)

where
∑M
j=l pm = O(1) (as it lies always in [0, 1]), and

C
�
,
∑
m∈M

�

pm√
dm

(14)
=

[
H 2τ

3
(r − 1)−H 2τ

3
(l − 1)

] 3
2

K
1
2
� Hτ (M)

, (17)

C � ,
∑

m∈M �

pm√
dm

(14)
=
√
N

Hτ (M)−Hτ (r − 1)

Hτ (M)
, (18)

K
�
,

(K − l + 1)N − (M − r + 1)

N
. (19)

B. Estimation of l and r

As indices l and r are not given in closed form, we derive
approximations to compute them from a system of equations.
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1) Estimation of l: first, l ≤ K + 1 (hence l = Θ(1)), as
l − 1 represents the number of files cached in all nodes. If
the non-truncated M

�
and down-truncated M� are not both

empty, using (11b), dl < 1 is equivalent to

K−l+1− M−r+1

N
< l

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
. (20)

If, moreover, the up-truncated setM

�

is not empty, i.e., l > 1,
then dl−1 = 1. This means that if we attempted to decrease
index l by 1, this would violate the density constraints, and
result in (11b) to a number greater than 1 on file l − 1:

K−l+2− M−r+1

N
≥ (l − 1)

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−2)

]
.

(21)
Thus, provided l > 1, l can be uniquely determined as
the lowest integer that satifisfies (20)-(21), which is unique
(Theorem 5). An approximation for l can be computed treating
(20) as an approximate equality whenM

�
6= ∅, or equivalently

when l < r (as dl−1 = 1 and dl < 1):

K−l+1− M−r+1

N
∼= l

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
. (22)

2) Estimation of r: IfM
�
∪M

�

is not empty, dr−1 >
1
N ⇔

(K−l+1)N−M+r−1 >(r−1)
2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
.

(23)

If the down-truncated M� is not empty, i.e., r ≤ M , then
dr = N−1. Thus, if we increased r by one, the constraint
would be violated producing in (11b) a density less than N−1:

(K−l+1)N−M+r ≤ r 2τ
3

[
H 2τ

3
(r)−H 2τ

3
(l−1)

]
. (24)

As before, (23) is an approximate equality if l < r, i.e.,

(K−l+1)N−M+r−1 ∼= (r−1)
2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
.

(25)

3) Estimation of l/r: For all l, r, it is N > dl
dr−1

=
(
r−1
l

)2τ
3 .

As before, whenever l and r are not equal to the extremes,
i.e., 1 < l < r < M + 1, it is dl−1/dr = N . Thus,

l ∼= rN−
3
2τ . (26)

Next, we study the asymptotic behavior of the rate C by
finding the l, r indices, that is, the partitioning of M to sets
M

�

,M
�

and M� . The limiting behavior regards the case of
the number of nodes N and the number of files M increasing
to infinity. We use l̂ and r̂ to refer to the limits of l and r.

Before this, we start with a set of basic results. First, it is
not possible in the limit to have files cached in every node
unless the popularity parameter τ exceeds 3/2 (the proofs of
the results that follow can be found in Appendix B):

LEMMA 11: If τ ≤ 3/2, then l→ 1.

Second, we establish the upper bound of C = O
(√
N
)

,
the Gupta-Kumar rate [3]. This is intuitive: if replication is
ineffective (e.g., due to large number of files), then the system
and its performance essentially reduce to [3].

LEMMA 12 [BOUND ON C
�
]: C

�
= O

(√
N
)

.

LEMMA 13 [BOUNDS ON C� ]: C � = O
(√

N
)

. Furthermore,

1) for τ < 1, and r
lim

< M , it is C � = Θ
(√

N
)

,

2) for τ > 1, it is C� = Θ
(√

N
(
r1−τ−M1−τ)).

If, moreover, r
lim

< M , then C � = Θ
( √

N
rτ−1

)
.

COROLLARY 14 [BOUND ON C]: C=O
(√
N
)

.

Let us start the asymptotic analysis by partitioning the space
of M,N parameters according to the cardinality of the setM�

of the files of down-truncated density dm = 1/N .

C. Almost Empty Down-truncated Set M�

As a first case, assume that the number of nodes N and
files M increase towards infinity, and at the same time M�

remains an almost empty set. We define formally M� ≈ ∅ iff
|M � | = o(M), i.e., the number of the down-truncated files is
of lower order than their total number. For this to happen, M
should increase at a slow pace with N , so that the constraint
dm ≥ N−1 is satisfied for almost all, but o(M) files. The
extreme case of this regime is to have first N →∞, and then
M →∞, i.e., convert the joint limit to a double limit.

To study the asymptotics of C, we first estimate l and r. The
almost empty M � implies that M − r = o(M), thus r ∼M .

THEOREM 15 [l̂ FOR ALMOST EMPTYM� ]:
1) For τ ≤ 3/2, l→ 1.
2) For τ > 3/2, l converges to l̂, the integer solution of{

(K − l̂ + 1)l̂−
2τ
3 < H 2τ

3
−H 2τ

3
(l̂ − 1),

(K − l + 2)(l̂ − 1)−
2τ
3 ≥ H 2τ

3
−H 2τ

3
(l̂ − 2),

(27)

if such exists and is greater than 1, or 1 otherwise.

An approximate solution of (27) can be computed from

K − (l − 1) ∼= (l − 1)
2τ
3

[
H 2τ

3
−H 2τ

3
(l − 1)

] (15)∼= 3
l − 1

2τ − 3
⇔

l ∼= 1 +
2τ − 3

2τ
K. (28)

Next, we study the conditions so that M� is almost empty:

THEOREM 16 [M� ALMOST EMPTY]: M − r = o(M) iff

• for τ < 3/2, M
lim

≤
(
1− 2τ

3

)
KN ,

• for τ = 3/2, M lnM
lim

≤ KN ,

• for τ > 3/2, M
lim

≤
[

(K−l̂+1)( 2τ
3 −1)

l̂1−
2τ
3

] 3
2τ

N
3
2τ .

where l̂ = l̂{τ> 3
2 ,M� =∅} from Theorem 15. If the above

inequalities are strict, then r = M + 1 (and thus M� = ∅).

THEOREM 17 [CAPACITY FOR ALMOST EMPTYM� ]:

• If τ < 1, C = Θ
(√

M
)

.

• If τ = 1, C = Θ
( √

M
logM

)
.

• If 1 < τ < 3/2, C = Θ
(
M

3/2−τ).
• If τ = 3/2, C = Θ

(
log

3/2M
)

.
• If τ > 3/2, C = Θ (1).
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D. Non-empty Down-truncated Set M�

When M � is non-empty, it is C � > 0. From Corollary 14, we

know that C is bounded by the Gupta-Kumar rate of O
(√

N
)

.

Thus, we turn our attention to the case of C = o
(√
N
)

.

THEOREM 18 [l̂ AND r̂ FOR NON-EMPTYM� ]: If M exceeds
the conditions of Theorem 16,
• if KN−M = ω(1), then we discern the following cases:

τ <3/2 : l→ 1, r ∼ 3− 2τ

2τ
(KN −M), (29)

τ =3/2 : l→ 1, r ln r ∼ KN −M, (30)

τ >3/2 and M
lim

≤ (K − β)N :

l→ l̂ ∼= α

[
K + 1− lim

M

N

]
, (31)

r ∼ α
[
KN

3
2τ − M

N1− 3
2τ

]
. (32)

τ >3/2 and M
lim

> (K − β)N :

l→ 1, r ∼
[

2τ

3
(KN −M)

] 3
2τ

(33)

where α = 2τ−3
2τ , β = 3

2τ−3 .
• if KN −M = O(1), then l → 1, r = Θ(1), with the

exact value determined by{
KN−M+r−1 > (r−1)

2τ
3 H 2τ

3
(r−1),

KN−M+r ≤ r 2τ
3 H 2τ

3
(r).

(34)

Note that in the case of τ > 3/2, the asymptotic law for r
is the same, r = Θ

(
(KN −M)

3
2τ

)
in both (32) and (33).

Moreover, the approximation of (31) on l̂ can be precisely
carried out via (27), if we substitute K with K − limM/N .

THEOREM 19 [CAPACITY FOR M
lim

< KN ,M� 6= ∅]:

• If τ < 1, C = Θ
(√

M
)

.

• If τ = 1, C = Θ
( √

M
logM

)
.

• If 1 < τ < 3/2, C = Θ
(
M

3/2−τ).
• If τ = 3/2, C = Θ

(
log

3/2 r
)

.
• If τ > 3/2, C = Θ (1).

THEOREM 20 [CAPACITY FOR M ∼ KN ]:

• If τ ≤ 1, C = Θ
(√

M
)

.

• If 1 < τ < 3/2, C = Θ
( √

M
(KN−M)τ−1

)
.

• If τ = 3/2, C = Θ
(√

M
KN−M log

3
2 r
)

.

• If τ > 3/2, C = Θ

( √
M

(KN−M)
3(τ−1)

2τ

)
.

E. Validation for the WN Problem

Table III lists all possible cases of scaling laws of C, which
pertain to CCD?, and CAN?, too (from Theorem 9). Regarding
the WN Problem, it suffices to upper bound A0,0; from (13),

A0,0 ≤
1

K

M∑
k=1

p
2
3
m ≤

1

K
H 2τ

3
(M).

Thus, A0,0 may diverge only for τ ≤ 3/2, as Mτ−1 when
τ < 3/2, or logM when τ = 3/2. It is easy to verify that A0,0

always scales slower than C in all cases; therefore, Table III
pertains to the scaling of the required rate CWN?, too.

F. Discussion on Asymptotic Laws

The main result of the asymptotic laws regards the minimum
required link rate required to sustain a request rate of λ = 1
from each node. As a preliminary comment, the sustainable
link rates at the physical layer are not studied here, as we do
not investigate on the operations in the PHY and MAC layers;
they are subject to the information theory and Shannon’s
capacity law. Thus, a rate C that scales to infinity should be
interpreted rather as the inverse of the maximum sustainable
request rate λ, e.g., the result of C = Θ(

√
M) for λ = 1 is

equivalent to C = Θ(1) for λ = Θ(1/
√
M), as in [3].

The power law parameter τ sets two phase transition points,
1 and 3/2, leading to distinct asymptotics: the higher τ ,
the more uneven the popularity of files, and thus, the more
advantageous caching becomes (i.e., lower link rate C). As
an example, on τ > 3/2 and M ≤ (K − ε)N , with ε a
small constant, C = Θ(1), or, in words, the wireless network
is asymptotically perfectly sustainable. However, such high a
τ has been observed in quite specific scenarios (i.e., mobile
applications), as discussed in Section II, thus such a favorable
situation would be rare in actual traffic.

The more common in practice scenarios regard the cases
of low and intermediate values of τ (traffic in routers and
proxies), where the popularity is more flat, closer to the
uniform distribution. Caching becomes less effective, ending
to the Θ

(√
M
)

law for τ < 1 in the cases of low spare
capacity KN − M for replication, which is a synonym of
the Gupta-Kumar law, if we associate the number of files M
to the number of communicating pairs in [3]. When M scales
slower than N , there is an improvement over [3], which, under
the above prism, expresses the Gupta-Kumar law for the flows
induced from the replication. The improvement is most notable
on τ ≥ 1, i.e., compare the Θ

(
M

3
2−τ

)
vs. the Θ

(√
M
)

law.
In an alternate view, the joint scaling of M and N can be

considered as each new node bringing its own new content
in the network. In the case of M ∼ δKN being a fraction
of the total buffer capacity, the new node has spare capacity
to cache other files, too. The value of constant δ determines
the size of the down-truncated set M� (Theorem 16) of the
files uniquely stored, and, consequently, the scaling law of C:
Θ
(√
M
)

for τ < 1, Θ
(
M

3
2−τ
)

for 1 < τ < 3/2, or Θ(1) for
τ > 3/2. Under this perspective, the improvement for τ ≥ 1
highlights the advantage of replication: as M is of the same
order with N , the flow model is a fair comparison to [3].

Last, when the ratio of M/KN approaches 1, replication
becomes impossible: almost all files are stored once (as r̂ =
Θ(1)), thus, the paradigm essentially reduces to the random
communicating pairs of [3]. Then, C = Θ

(√
M
)

= Θ
(√
N
)
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TABLE III
THE REQUIRED CAPACITY RATE C ASYMPTOTIC LAWS along with the limits of the indices l̂ and r̂ for all cases of τ and joint limits of N,M . From the left
to the right, M increases its order in comparison to N , from the zero-th to linear (i.e., the KN bound); the scaling of C increases accordingly towards

√
M .

(a) The Cases of τ < 1, τ = 1 and 1 < τ < 3/2.

M
N

: M finite N→∞, then
M

lim

≤ 3−2τ
2τ

KN
M

lim

> 3−2τ
2τ

KN, M ∼ KN
M →∞ and M

lim

< KN KN−M = ω(1) KN−M=O(1)

M� empty empty almost empty non-empty non-empty non-empty

l̂ 1 1 1 1 1 1

r̂ M + 1 M + 1 M − o(M) 3−2τ

2τ
(KN −M) 3−2τ

2τ
(KN −M) Θ(1) (34)

C

τ < 1 Θ(1) Θ
(√

M
)

Θ
(√

M
)

Θ
(√

M
)

Θ
(√

M
)

Θ
(√

M
)

τ = 1 Θ(1) Θ
( √

M
logM

)
Θ
( √

M
logM

)
Θ
( √

M
logM

)
Θ
(√

M
)

Θ
(√

M
)

1 < τ < 3
2

Θ(1) Θ
(
M

3
2
−τ
)

Θ
(
M

3
2
−τ
)

Θ
(
M

3
2
−τ
)

Θ
( √

M
[KN−M ]τ−1

)
Θ
(√

M
)

(b) The Case of τ = 3/2.

M
N

: M finite N→∞, then
M lnM

lim

≤ KN M lnM
lim

> KN and M
lim

< KN
M ∼ KN

M →∞ KN −M = ω(1) KN −M = O(1)

M� empty empty almost empty non-empty non-empty non-empty

l̂ 1 1 1 1 1 1

r̂ M + 1 M + 1 M − o(M) r ln r ∼ KN −M r ln r ∼ KN −M Θ(1) (34)

C Θ(1) Θ(log
3
2 M) Θ(log

3
2 M) Θ

(
log

3
2 r
)

Θ
(√

M
KN−M log

3
2 r
)

Θ
(√

M
)

(c) The Case of τ > 3/2.

M
N

: M finite N→∞, then M
lim

≤ hN
3
2τ M

lim

> hN
3
2τ, and M

lim

> (K − β)N M ∼ KN
M →∞ (see Th. 16) M

lim

≤ (K − β)N and M
lim

< KN KN−M=ω(1) KN−M=O(1)

M� empty empty almost empty non-empty non-empty non-empty non-empty

l̂ Θ(1) (27) Θ(1) (27) Θ(1) (27) ∼=α
[
K+1−lim M

N

]
1 1 1

r̂ M + 1 M + 1 M − o(M) ∼α
[
KN

3
2τ− M

N
1− 3

2τ

]
∼
[
2τ
3
(KN−M)

] 3
2τ ∼

[
2τ
3
(KN−M)

] 3
2τ Θ(1) (34)

C Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ

( √
M

[KN−M ]
3(τ−1)

2τ

)
Θ
(√

M
)

matching [3], as intuitively expected. This constitutes an
important validation of the suitability of the square grid lattice.

VI. CONCLUSIONS & FUTURE WORK

We investigated the asymptotic properties of the joint deliv-
ery and replication problem in wireless networks with multi-
hop communications and caching. The study involved four
steps: (i) the formulation of the precise problem, (ii) the
reduction to a simpler density-based problem, (iii) the solution
and the design of an order-efficient (w.r.t. to the optimal)
replication/delivery scheme, and (iv) the derivation of the
scaling laws when content popularity follows the Zipf Law.

In our investigation, we focused on the scaling of network
size N , and content volume M . An immediate extension
regards adding a new scaling dimension, node capacity K:
in expanding networks, not only new nodes and content are
added, but existing nodes evolve, augmenting their storage. In
such setup, replication is expected to be advantageous, even for
low values of τ provided that cache capacity scales sufficiently
fast with the content volume (see [25] for a preliminary report).

Overall, the assumptions of the perfect grid and the identical
nodes—including their content access requests—of our study
define a simple scenario, that, however, captures the basic
elements of wireless networks, in order to focus on the
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w

n′

n
`

`′

Fig. 4. The square cluster Qw of
the nodes served by node w, with
the I-shaped and L-shaped routes
for nodes n and n′, respectively.

 

Node n /∈ Qw,m
Node wm
Node n ∈ Qw,m

Set Qw,m

Nodes 1 hop away

Nodes 2 hop away

Nodes 3 hop away

Nodes 4 hop away
(last incomplete ring)

Fig. 5. A cluster of Q = 30 peers served by node wm of ρ̌ = 3.

Qw,m

Fig. 6. The RHS of (37)) (dashed line)
and the LHS of (37) versus the cluster
size Qw,m: knots indicate the points of
ρ(Qw,m) = 1, 2, . . . , where (37) is an
equality.

replication and delivery problem and derive explicit asymptotic
laws. Interesting follow-ups can focus on studying the extent
to which these assumptions can be relaxed (such as random
node placement, hetereogeneous nodes, etc) without deviating
from the laws of Table III, and/or the extent of deviation.

In a quite important extension along this line, one can con-
sider time-varying content popularity pm(t). Under the static
popularity, it is appropriate to have the caches statically set, as
in Algorithm 1. Under dynamic popularity, however, the cache
contents should vary accordingly; this creates the complication
of cache updates, and makes necessary to reconsider the traffic
in the network links under the dynamic setting of [Bn(t)].

In our study, this overhead is possible to ignore under the
following perspective: it is incurred at the beginning, before
the actual operation of the network; no matter how long this
initialization lasts, it can be amortized over an arbitrarily long
operation of the network. In contrast, the time-varying content
popularity forces to take into account the overhead of cache
updates along with the traffic of the users’ requests. The key
question to answer is how fast the popularity can change
before deviating from the static case’s scaling laws.

Complications such as dynamic content popularity or non-
uniform node placement are expected to increase the commu-
nication load (however, this remains to be formally verified):
in the best case, the asymptotic law will be preserved with no
increase in the multiplicative coefficient; in a second case, the
law will be preserved with a higher multiplicative coefficient;
in the worst case, a different, less favorable law will arise.

From a practical standpoint, the derived asymptotic laws
provide an important datapoint on what to expect if networks
were enhanced with caching, i.e., what can be gained over the
Θ(1/

√
N) law of [3]. Similar follow-up studies can provide

more datapoints about the benefits possible w.r.t. scalability
and sustainability, if novel techniques (such as cooperative
transmissions over long links) are used in addition to caching.
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APPENDIX A

Proof of Lemma 3: Justified from Lemma 2, we use a single
arbitrary shortest path for each (n,m) pair to a unique wm,n.
From the discussion on dm, set Wm has cardinality Wm =
Ndm, i.e., there exist Ndm nodes in the network that cache
file m. Let Qw,m be the set of nodes served from node w for
requests on m, and Qw,m be its cardinality. Clearly,∑

w∈Wm

Qw,m = N. (35)

It is clear that the best arrangement for a node w that serves
a cluster of Qw,m nodes on requests for data m, is when these
nodes lie in a square rhombus centered at w: this minimizes
the total hop-count

∑
n∈Qw,m h(n,m) for the client nodes of

Qw,m. Thus, the 1st node (w itself) has a hop count h = 0, the
next 4 nodes have h = 1, the next 8 nodes have h = 2, etc.
as illustrated in Fig. 5. Thus, taking into account the nodes of
the last incomplete ring at hop count equal to ρ̌+ 1, too, it is

∑
n∈Qw,m

h(n,m)≥
Hops for the nodes of the rhombus at hops ≤ρ̌︷ ︸︸ ︷

1× 0 + 4× 1 + 8× 2 + · · ·+ 4ρ̌ · ρ̌

+

Number of nodes at ρ̌+1︷ ︸︸ ︷
[Qwm − 1− 2(ρ̌+ 1)ρ̌]

×(ρ̌+1)︷ ︸︸ ︷
(ρ̌+ 1)

=2ρ̌(ρ̌+1)
2ρ̌+1

3
+[Qw,m−1−2(ρ̌+1)ρ̌](ρ̌+1),

where ρ̌ is the radius of the rhombus. The radius can be
computed as the integer part ρ̌ = bρc, where ρ satisfies

Qw,m = 2(ρ+ 1)ρ+ 1.

Indeed, the RHS expresses the number of elements in a
rhombus of radius ρ, when ρ is an integer. Solving for ρ,

ρ =
1

2

(
−1 +

√
2Qw,m − 1

)
. (36)

3THALES supported Prof. Tassiulas, and STAMINA supported Dr. Gitzenis
and Dr. Paschos.
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Observe that

2ρ(ρ+1) 2ρ+1
3 ≤ 2ρ̌(ρ̌+1) 2ρ̌+1

3 +[Qw,m−1−2(ρ̌+1)ρ̌](ρ̌+1). (37)

Indeed, the above is an equality when ρ is integer, as the
second term of the RHS vanishes. Moreover, it is easy to see
that the LHS is a convex and increasing function of Qw,m,
(i.e., if we substitute ρ = ρ(Qw,m) from (36)), whereas
the RHS is piecewise linear on Qw,m (the pieces’ endpoints
correspond to integer values of ρ). Comparing the two, the
LHS cannot exceed the RHS, as illustrated in Fig. 6. Thus,∑
n∈Qw,m

h(n,m)≥2ρ(ρ+1)
2ρ+1

3
=

√
2

3
(Qw,m−1)

√
Qw,m−

1

2
,

with equality when ρ is integer. As function f(x) , (x −
1)
√
x− 1

2 − x(
√
x − 1) ≥ 0 for x ≥ 1 (since f(1) = 0,

f ′(1) > 0 and f ′′(x) ≥ 0 for x ≥ 0), it follows that∑
n∈Qw,m

h(n,m) ≥
√

2

3
Qw,m

[
Q

1
2
w,m − 1

]
. (38)

Then, the total number of hops per file m for all nodes is∑
n∈N

h(n,m) =
∑

w∈Wm

∑
n∈Qw,m

h(n,m)
(38)
≥
∑

w∈Wm

√
2

3
Qw,m

[
Q

1
2
w,m−1

]
∗
≥
√

2

3
Wm

[ ∑
w∈Wm

Qw,mW
−1
m

]√∑
w∈Wm

Qw,mW
−1
m −1


(35)
=

√
2

3
N
[
d
− 1

2
m − 1

]
,

where ∗ is is Jensen’s inequality applied on the convex
function g(x) = x (

√
x− 1) for the average node count per

w,
∑
wQw,mW

−1
m . In total,

ave
`
C`=

1

2N

∑
m∈M

∑
n∈N

h(n,m)pm≥
√

2

6

∑
m∈M

(
d
− 1

2
m −1

)
pm.

As this inequality is true for the optimal values of the AT
problem, the result follows.

Proof of Lemma 5: Function 1√
x

is strictly convex, hence
CCD is a strictly convex function on [dm]. Given that the
constraints are linear, the optimization is strictly convex [26,
§4.2.1], and has a unique optimal solution [dCD?m ].

Proof of Lemma 6: By dualizing the sum capacity constraint
of
∑
m∈M dm ≤ K with Lagrange multiplier µ, it follows that

dCD?m = max

{
1

N
,min

{
1,

(
pm
2µ

) 3
2

}}
.

Thus, dCD?m and sets M

�

,M
�
,M� follow the order of pm.

Proof of Theorem 7: The first part has already been shown
in Lemma 1. For the second part, note that dCD?m < 4d◦m. Thus,

2CCD?=

√
2

3

∑
m∈M

[
1√
dCD?m
−1

]
pm=

√
2

6

∑
m∈M

[√
4

dCD?m
−2

]
pm

>

√
2

6

∑
m∈M

[
1√
d◦m
− 2

]
pm = CCD◦ −

√
2

6
.

Proof of Lemma 8: Observe that on each iteration of k,
Algorithm 1 adds data to a cache with the least items. Thus,
if we assume that a cache n gets K + 1 or more items, all
nodes n′ 6= n should have at least K items, i.e.,

∑
n∈N |Bn| ≥

NK + 1. This is a contradiction: each item m appears in
Nd◦m = 4ν−νm caches, and from d◦m construction, it is∑

n∈N |Bn| = N
∑
m∈M d◦m

(12)
≤ N

∑
m∈M dCD?m ≤ NK.

Proof of Theorem 9: Given the shortest path routing and
the replication pattern, we can compute the expected number
of hop counts from a random client to the node serving its
request. Indeed, consider a node w that stores m in its cache,
and the associated cluster of client nodes that use w to retrieve
m. Observe that this cluster is Qw,m and is a square of size
2ν
◦
m × 2ν

◦
m , with wm at its center (as in Fig. 4). We sum over

all nodes of Qw,m the hops required to reach w; making use of
the symmetry on the two axis, we carry out the summation by
counting the hops along one axis and double it. For d◦m < 1,

∑
n∈Qw,m

h(n,m) = 2×

Movements on the vertical direction︷ ︸︸ ︷
[1+. . .+2ν

◦
m−1+1+. . .+(2ν

◦
m−1−1)]

columns︷︸︸︷
2ν
◦
m

= 23ν◦m−1. (39)

The average load per link is computed from (9) by summing
over all w ∈ Wm and over all data m ∈ M with weight pm,
and dividing by the number of links of the network (i.e., 2N );
Wm contains Nd◦m nodes, and d◦m = 4−ν

◦
m . Thus,

CAN◦ = (2N)−1
∑

m∈M

∑
w∈Wm

23ν◦m−1
1{d◦m<1}pm

= (2N)−1
∑

m∈M
Nd◦m23ν◦m−1

1{d◦m<1}pm

≤ 1

4
+

1

4

∑
m∈M

[
1√
d◦m
− 1

]
pm =

1

4
+

3

4

√
2CCD◦.

Given that CCD? ≤ CAN? ≤ CAN◦, and CCD◦ ≤ 2CCD? +
√

2/6
from Theorems 4 and 7, respectively, it follows that

CAN? ≤ CAN◦ ≤ 1

2
+

3

2

√
2CCD? ≤ 1

2
+

3

2

√
2CAN?.

Proof of Theorem 10: Consider a link ` in the network and
a file m. Traffic about m flows through ` only if ` links nodes
of the same cluster Qw,m (directed towards the cluster head
w as in Fig. 4). Next Lemma computes a bound on the traffic
C`,m that flows about m through `. Note that Algorithm 1
constructs a square-shaped cluster Qw,m of size 2ν

◦
m × 2ν

◦
m .

LEMMA 21 [LINK LOAD PER FILE]:
• If link ` is adjacent to nodes belonging to different

clusters Qwm or ν◦m = 0, then C`,m = 0.
• If ` is in the same row or column with wm, then C`,m ≤

2ν
◦
m−1

(
2ν
◦
m−1 + 1

2

)
pm.

• If ` is not in the same row or column with wm, then
C`,m ≤ 2ν

◦
m−2pm.

Proof: Links ` and `′ in Fig. 4 are the most loaded links
among the links in the same row to wm, or not in the same row
with wm, respectively; in fact, all links at the same column as
`′, but `, have the same load. For link `, factor 2ν

◦
m−1 counts

the number of columns that lie from ` to the boundary of
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Qw,m. In 2ν
◦
m−1 + 1

2 = 1
2

[
2ν
◦
m − 1

]
+ 1, 2ν

◦
m − 1 are the

nodes at each column whose half traffic (factor 1/2 due to the
two L-shaped paths, Section IV-E) is carried through `, and
1 is the one node per column at the same row with `, whose
traffic is carried in full. Similarly, for link `′, 2ν

◦
m−2 is the

2ν
◦
m−1 of nodes served through `′ scaled by 1/2 due to the

two L-shaped paths. Column links can be treated similarly.
Using the above, we bound the load of an arbitrary link `, as

follows. Consider the case of ` being a row link (column links
can be treated similarly), located at row y` (y` takes values
from 1 to 2ν); summing over all data m that have ν◦m > 0,

C` =
∑
m∈M

C`,m ≤
∑

m∈M\M0

pm

[
2ν
◦
m−2

1{6∃wmin the row of `}

+2ν
◦
m−1

(
2ν
◦
m−1+

1

2

)
1{∃wmin the row of `}

]

≤

 ∑
m∈M\M0

2ν
◦
m−2pm

+
∑

m∈M\M0

4ν
◦
m−1pm1{∃wmin the row of `}

As 1/
√
d◦m = 2ν

◦
m , the first summation is less or equal

to 3
√

2
4 CCD◦ + 1

4 < 3
√

2
2 CCD? + 1

2 < 3
√

2
2 CAN? + 1

2 (using
Theorems 4 and 7). As for the second term, Lemma 24 that
follows bounds it by 2CAN◦+2+A0,0. Using Theorem 9, too,

CWN? ≤ CWN◦≤3+A0,0+9

√
2

2
CAN?.

Given, moreover, that CAN? ≤ CWN?, the proof is complete.
Before proving the bound of Lemma 24, we provide some

key intermediate results. First, to make the terminology clear,
note that a file m gets replicated into 1 or more replicas.

Consider rows y` and y 6= y` and the sets of replicas Xy`
and Zy placed in each of these two rows by Algorithm 1,
respectively. We aim at establishing a 1-1 matching from Xy`
to Zy . Specifically, we exclude from Xy` the replicas of (i)
the first file m ∈M\M0 put in row y`, at the loop of step 1,
and (ii) up-truncated set M0 ≡ M

�

(i.e., the ones replicated
at every node at step 12). Note that the two sets Xy` and Zy
do not contain necessarily the same number of elements. We
show that Zy contains a sufficient replicas so that a z ∈ Zy
can be paired at most with one x ∈ Xy` ; moreover, in the
pairs x 7→ z, z will be allocated by the Algorithm before x.

Let us order the files placed at row y` as follows: let mj

be the j-th file added at row y` at the loop of step 1; as we
exclude first file m1, we are interested in matchings for j ≥ 2.
The j-th file has 2

ν−ν◦mj replicas at row y` (and more in other
rows), which are denoted by mj,r, with r = 1, 2, . . . , 2

ν−ν◦mj .
Next result is towards establishing this matching.

LEMMA 22 [REPLICA COUNTING]: Excluding the replicas
of file m1 at row y`, any row y 6= y` holds at least as many
replicas as y` at each iteration of step 1 of Algorithm 1.

Proof: The Algorithm operates on the submatrices of size
2k×2k (in Fig. 3, the upper left 2×2 and 4×4 submatrices are
marked) filling them in an identical way from set Mk in the
loop of step 9. Thus, on each iteration of the loop of step 1,
for the current value of k, all 2k×2k submatrices are identical
(e.g., just after file m = 6 has been added in Fig. 3).

In fact, on the first time that row y` is visited, a replica of file
m1 is placed on the diagonal, at (y`, y`): i.e., the node (x, y)
selected at step 6 has x = y = y` mod 2k; then, the loop of
step 9 puts m1 to (y`, y`). The second file at row y` will lie
on node (x, y) with x− 1 mod 2k = y = y` mod 2k, and so
forth, until all columns at row y` have one replica; after this,
the caches of row y` will start receiving their second replica.

Let us describe would be the desired, most favorable case
for the operation of the Algorithm. If the Algorithm visited
rows in an orderly way to allocate replicas, the Lemma would
be trivial. In particular, the desired operation follows the ‘rule’
that successive visits of row y` regard adjacent diagonals and
in between all other rows are visited once. If this is the case,
then, when visiting y` for the second time (for file m2), any
row y 6= y` will have already been visited and allocated at
least as many replicas as m2, therefore the statement is true.
Recursively, then, this will hold true for m3 and so forth.

Such a good case would almost be if the setsMk were such
to get exhausted when all caches contained the same number
of replicas. It is clear, then, that the nodes of each submatrix
2k × 2k would fill evenly in the order of diagonals of Fig. 2.
In this setup, however, there is occasionally a deviation from
the ‘rule’ in some of the times that the Algorithm moves to an
adjacent diagonal: e.g., after visiting once row 0 at (x, y) =
(0, 0), it considers twice row 1—at (1, 1) and (0, 1), without
reconsidering row 0. This happens only once per row for all
rows until all caches increase their contents by one replica.
Thanks to the exclusion of file m1, row y contains at every
step of the Algorithm enough number of replicas to pair the
replicas of row y` with. Note that this deviation would not
apply if we studied the replicas along columns.

Returning to the general case of sets Mi, the Lemma
remains valid thanks to the way sets Mi are scanned. In
particular, as variable k in the loop of step 1 increases from k
to k′ = k+ 1, the submatrices of 2k×2k stop being identical,
because the replicas of next files are now placed more sparsely
than before, i.e., every 2k+1 nodes instead of 2k along each
axis. However, the larger submatrices of size 2k

′×2k
′

continue
to remain identical until k switches again to the next integer.
Note that the number of replicas that each file gets duplicated
is 4ν−k, and thus, as k increases, the number of replicas drops.

Let us then go a step back on the previous assumption, and
examine the deviation from the ‘rule’ that take place when
a set Mk gets exhausted without all caches having the same
number of elements (as with M1, M2 and M3 in Fig. 3).

The successive visit to y` will not be to an adjacent diagonal
if the latter has been filled earlier: for example, w.r.t. Fig. 3, for
y` = 2 (numbering starts from zero), after placing file 4, we
revisit row y` = 2, to place file 7 on a non-adjacent diagonal,
as it happens that the adjacent diagonal is filled with file 1.
Clearly, this deviation happens whenMk has few elements to
fill a row, and k increases in between. In such a case, moreover,
other rows will be visited more than once, e.g., after file 4 is
placed, row y = 0 gets visited twice for files 5 and 6.

A second possible deviation is the reverse, i.e., a row y 6= y`
is not visited before revisiting y`; this is illustrated with files
4, 5, 6 and 7 of the previous example, if y` = 0 and y = 2.

Observe that both above deviations are related to an increase
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of k, altering the number of replicas allocated. Both happen
when a row, be it y` or y, has previously received more replicas
at a lower k than the current. The omission from revisiting
a row acts towards smoothing the imbalance in the replicas
allocated in different rows. Excluding m1 from the counting
in y`, in the presence of such deviations, row y never holds
more replicas than row y` at any step of the Algorithm.

The above counting argument leads to next Corollary:

COROLLARY 23 [REPLICA MATCHING]: Consider row y 6=
y`; excluding the replicas of the first file added at row y` in
the loop of step 1 of Algorithm 1 and the files of setM0, every
replica added at row y` can be paired to a replica placed at
row y with the replica at y being placed before the associated
replica at row y` in the execution of Algorithm 1.

As an example matching w.r.t. Fig. 3, when file 3 is placed
on the network, it is the second (m2) in the row y` = 1 (m1 is
file 2). As m1 is not matched, all replicas of 3 at row y` = 1
can be uniquely paired to the replicas of 1 in the same column
for any y = 0, 2, 4, 6. The same would be applicable for the
replicas of 3 in rows y` = 3, 5, 7. As a second example, file 4

is the second at row y` = 3 (and 7). Its replicas are matched
to the replica of 1 of in the previous column at row y = 1 or
y = 5. Regarding rows y = 1, 3, 5, 7, we are free to choose
to pair the replicas of file 4 with the replicas of either file 2

or 3 in the same or previous column, respectively. Of course,
the matching of 4’s replicas to 2 or 3 guides the matching of
the subsequent replicas in the row, such as 7, A, etc.

Last, we define the replica pairs: replica mj,r at row y`
pairs to a replica at row y denoted as my

j,r, i.e., mj,r 7→ my
j,r.

Consider, moreover, the trivial matching for y = y`, by pairing
each replica at row y` to itself.

LEMMA 24: For any row y0 = 1, 2, . . . , 2ν ,

2CAN◦+ 2 +A0,0 ≥
∑

m∈M\M0

4ν
◦
m−1pm1{m exists in row y}.

Proof: We compare the elements of the replica pairs
mj,r 7→ my

j,r on the basis of the non-truncated M
�

or
down-truncated M� they belong to (M

�

is excluded from the
matchings). As my

j,r has been added to the network before
mj , there exist three possibilities:
• Both mj,r and my

j,r are in the non-truncated M
�
. Then,

1=p−1
mjpmj =

[
AM

�

,M� dCD?mj

]− 3
2

pmj
(12)
≥
[
4AM

�

,M� d◦mj

]− 3
2

pmj,

and similarly, 1 = p−1
myj,r

pmyj,r =

=
[
AM

�

,M � dCD?myj,r

]− 3
2

pmyj,r≤
[
AM

�

,M� d◦myj,r

]− 3
2

pmyj,r .

Combining these two inequalities, and using d◦m = 4−ν
◦
m ,

2
3ν◦mj

−3
pmj ≤ 2

3ν◦
m
y
j,r pmyj,r . (40)

• mj ∈ M� , my
j,r ∈ M�

. Clearly, ν◦mj = ν, whereas
ν◦
myj,r

∈ {1, 2, . . . , ν}. The fact that my

j,r
∈ M

�
imposes

a constraint on the probabilities pmj vs. pmyj,r of (11b):

pmyj,r ≥ 8
ν−ν◦

m
y
j,r pmj = 2

3ν−3ν◦
m
y
j,r pmj , (41)

which means that (40) holds in this case, too.

To see why (41) is true consider the cases
– ν◦

myj,r
= ν, or equivalently N−1 ≤ dCD?

myj,r
< 4N−1,

the above reads as pmyj,r > pmj , as expected;
– ν◦

myj,r
= ν − 1⇔ 4N−1 ≤ dCD?mj,y,r < 16N−1, it has

to be pmyj,r > 8pmj for (11b) to be true;
and so forth for other values of ν◦

myj,r
.

• Both mj and my
j,r belong to M � . Then, ν◦

myj,r
= ν◦mj .

Then, given that pmyj,r ≥ pmj , (40) is valid, too.

Summing (40) for all y, j ≥ 2 and r = 1, 2, . . . , 2
ν−ν◦mj ,

2ν
∑
j≥2

∑
r≥1

2
3ν◦mj

−3
pmj ≤

√
N−1∑
y=0

∑
j≥2

∑
r≥1

2
3ν◦
m
y
j,r pmyj,r⇔

4ν
∑
j≥2

2
2ν◦mj

−3
pmj ≤

√
N−1∑
y=0

∑
j≥2

∑
r≥1

2
3ν◦
m
y
j,r pmyj,r , (42)

where in the last step we used the number 2
ν−ν◦mj of replicas

of each mj on row y` on the LHS to compute the inner sum.
Regarding the RHS, each term refers to a replica my

j,r.
Thus, in the RHS, we get one term per replica that appears
in the matchings for every row y. Thus, the triple summation
encompasses almost all the replicas placed in the network—
it does not include, for example, the replicas added in the
network after the addition of the last file mj of M\M0 in
row y`. Thus, we can upper bound the RHS by including in
the summation every replica in the network except the ones
from M0. Using the fact that each file m has 4ν−ν

◦
m replicas,

we switch from the replicas to an expression that pertains to
the files. Specifically, the sum over the replicas weighted by

2
3ν◦
m
y
j,r pmyj,r is equal to a sum over files weighted by the same

factor 23ν◦mpm times the number of 4ν−ν
◦
m replicas per file.

In total, the RHS is upper bounded by∑
m∈M\M0

4ν−ν
◦
m23ν◦mpm

22ν=N
= N

∑
m∈M\M0

2−ν
◦
mpm≤N

(
CAN◦+1

)
.

Using the above bounds on the RHS with the LHS of (42),

4ν
∑

j≥2
2

2ν◦mj
−3
pmj ≤ N

(
CAN◦ + 1

) 4ν=N⇔∑
j≥1

4
ν◦mj
−1
pmj ≤ 2CAN◦ + 2 + 4ν

◦
m1
−1pm1

Last, consider the term of m1 ∈M \M0 in the LHS:

4ν
◦
m1
−1pm1=

pm1

4d◦m1

≤ pm1

dCD?m1

≤
AM

�

,M �

p
2
3
m1

pm1
=AM

�

,M� p
1
3
m1≤A0,0,

where the first inequality is equality or strict inequality de-
pending on whether m1 ∈M�

or m1 ∈M� , respectively.
Combining the last two inequalities, the result follows.

APPENDIX B

Proof of Lemma 11: If we assume that in the limit l
lim
> 1,

then we have two cases for r: r →∞, or r = O(1).
If r →∞, τ ≤ 3/2 leads to H 2τ

3
(r−1) diverging to infinity

in (22). However, the rest of the terms in (22) are bounded (as
l ≤ K). Therefore, (22) is a contradiction. Thus, it has to be
either M

�
= ∅, or l = 1. As r →∞ and l ≤ K + 1, it cannot

be M
�

= ∅. Therefore, if r →∞, it is l = 1 (i.e., dl 6∼= 1).
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If r = O(1), (26) contradicts with l
lim
> 1. Thus, l→ 1.

Proof of Lemma 12: Follows from the summation definition
of (17): observe that dm > N−1 and

∑
m∈M

�

pm ≤ 1.

Proof of Lemma 13: For τ < 1, C � = Θ
(√

N
)

follows

(18) and the fact that Hτ (M) −Hτ (r)
(15)
= Θ (Hτ (M)). The

latter comes from Hτ (M) diverging and r
lim

< M .
For τ > 1, it is C �

(15)
= Θ

(√
N
[
r1−τ−M1−τ]). If r

lim

< M ,

too, then M1−τ lim

< r1−τ , hence C � = Θ
( √

N
rτ−1

)
.

Proof of Theorem 15: Case τ ≤ 3
2 : From Lemma 11, l→ 1.

Case τ > 3
2 : Examining (20)–(21) in the limit, we observe

that r → ∞, hence H 2τ
3

(r − 1) → H 2τ
3

. Assuming a limit
l→ l̂, with l̂ > 1, (20)–(21) lead to (27). If (20)–(21) lead to
l̂ ≤ 1, then the assumption of l̂ > 1 is not valid (and thus (20)
is not applicable); then, l̂ = 1.

Proof of Theorem 16: By the definition ofM� almost empty,
it is M − r+ 1 = o(M), and given the constraint of (1), it is
M = O(N), thus M − r+ 1 = o(N) = o((K − l+ 1)N), as
K − l + 1 ≥ 1 in all cases from Theorem 15.

From the last element of M
�
, we have that dr−1 > N−1.

Substituting dr−1 in the latter from (11b), and taking the limit

(K−l+1)N > (r−1)
2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
, (43)

where we used M −r+1 = o((K− l+1)N) to eliminate the
respective term from the LHS. Next, we use (15) to approxi-
mate the Riemann terms and substitute l from Theorem 15:
Case 0 < τ < 3/2: l→ 1, thus (43) becomes

KN
lim

≥ (r−1)
2τ
3

(r−1)1−
2τ
3 −1

1− 2τ
3

= r−1−(r−1)
2τ
3

1− 2τ
3

.

As 2τ/3 < 1, it is (r−1)
2τ
3 = o (r−1). Hence, the above

is equivalent in the limit to (r−1)
lim

≤ K
(
1− 2τ

3

)
N , or, as

r = Θ(M), M
lim

≤ K
(
1− 2τ

3

)
N.

Case τ = 3/2: l→ 1, thus KN
lim

≥ (r−1) [ln(r−1)− ln l] .

Using that ln l = o(ln(r−1)), we get (r−1) ln(r−1)
lim

≤ KN ;

as r = Θ(M), the condition becomes M lnM
lim

≤ KN .
Case τ > 3/2: It is

(K− l̂+1)N
lim

≥ (r−1)
2τ
3
l̂1−

2τ
3−(r−1)1−

2τ
3

2τ
3 −1

= l̂1−
2τ
3 (r−1)

2τ
3−(r−1)

2τ
3 −1

.

As 2τ/3 > 1, it follows that (r−1) = o
(

(r−1)
2τ
3

)
, and the

above becomes (r−1)
lim

≤
[

(K−l̂+1)( 2τ
3 −1)

l̂1−
2τ
3

N

] 3
2τ

. Substituting

r − 1 with M , the condition follows.
Last, observe that in the above derivations, if we started

with dM > N−1, we would find the conditions for M� being
strictly empty, i.e. r = M + 1. As easily seen, this is true if
the conditions are satisfied with strict inequality.

Proof of Theorem 17: To find C, we compute C
�

and C�

from (17)-(18), and show that in all cases C � = O
(
C

�

)
. Thus,

C = Θ
(
C

�

)
. In assessing C � , r ∼M helps in deriving that

Hτ (M)−Hτ (r − 1) =

M∑
j=r

j−τ = Θ
(
M−τ (M − r)

)
.

Theorem 15 and M−r=o(M) result in K
�

= Θ(1) for all τ .

Case τ < 1: Regarding C
�
, H 2τ

3
(r + 1) and Hτ (M) diverge,

while H 2τ
3

(l − 1) is bounded (as l ≤ K + 1). Thus,

C
�

= Θ

( [
M1− 2τ

3 −1
] 3

2

M1−τ−1

)
= Θ

(√
M
)
.

If the condition of Theorem 16 is a strict inequality, C � = 0.
Otherwise, it is an equality, with M = Θ(N), and thus,

C� =
√
N
∑M
j=r j

−τ

Hτ (M)

(15)
= Θ

(√
N M−τ (M−r)

M1−τ

)
M=Θ(N)

= o
(√
M
)

.

Case τ = 1: In C
�
, H 2τ

3
(M) and Hτ (M) diverge, while

H 2τ
3
(l−1) is bounded. Thus, C

�
= Θ

((
M

1
3−1
) 3

2

logM

)
= Θ

( √
M

logM

)
.

As before, if the condition of Theorem 16 is a strict inequality,
C � = 0. Otherwise, it is an equality, with M = Θ(N), thus,

C� =
√
N
∑M
j=r j

−1

Hτ (M) = Θ
(√
N M−1(M−r)

logM

)
M=Θ(N)

= o
( √

M
logM

)
.

Case 1 < τ < 3/2: Regarding C
�
, only H 2τ

3
(M) diverges,

while the rest of the terms converge. Then, the order of C
�

is

determined from H
3
2
2τ
3

(M) ∼
[
M1− 2τ

3 −1
1− 2τ

3

] 3
2

= Θ
(
M

3
2−τ
)
.

As before, if the condition of Theorem 16 is a strict inequality,
C � = 0. Otherwise, it is an equality, with M = Θ(N), thus,

C� =
√
N
∑M
j=rj

−τ

Hτ (M)

(15)
=Θ

(√
NM−τ (M−r)

)
M=Θ(N)

= o
(
M

3
2−τ
)
.

Case τ = 3/2: C
�

= Θ
(

log
3
2 M

)
due to the numerator, all

other terms are bounded. If the condition of Theorem 16 is
a strict inequality, C � = 0. Otherwise, it is an equality, with

M = Θ(N), thus, C� = Θ
(√

N M−r
M

3
2

)
= Θ

(
M−r
M

)
= o(1).

In total, C = Θ
(

log
3
2 M

)
.

Case τ > 3/2: All terms converge in (17), thus C
�

= O(1).
If the condition of Theorem 16 is a strict inequality, C � = 0.

Otherwise, it is an equality, with M = Θ
(
N

3
2τ

)
, thus C� =

Θ
(√

N M−r
Mτ

)
= Θ

(
M−r
M

2τ
3

)
= o(1). In total, C = O(1).

Proof of Theorem 18: In the second case of KN −M =
O(1), observe that KN−M is the remaining number of places
after putting the M files once in the network. Clearly, r ≤
KN −M , thus r = O(1). As both r and l are bounded, (26)
cannot be true, therefore l̂ = 1. Hence, r is estimated from
(23), (24), which, substituting l→ 1 yields (34).

For the first part where KN−M = ω(1), we first note that
r = O(N), as r ≤M , and M = O(N), due to (1).
Case τ < 3

2 : From Lemma 11, l → l̂ = 1. Using this along
with (15) in (25), we can estimate r:

KN−M+r−1 ∼= 3(r−1)
2τ
3
r1−2τ

3 − 1

3− 2τ

Observe that assuming r = O(1), the above results become
a contradiction, as NK −M = ω(1), whereas all the other
terms are O(1). Therefore, it is r = ω(1), and (29) follows.
Case τ = 3

2 : From Lemma 11, l→ l̂ = 1. Working as before,
(25) in view of (15) gives that NK−M+r−1 ∼= (r−1) ln r.
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Clearly, r = ω(1), thus, r ln r ∼ KN −M .
Case τ > 3

2 : First, we assume l̂ > 1. Using (22) and (15),

K−l+1−M−r+1

N
∼= l

2τ
3
l1−

2τ
3 −r1−2τ

3

2τ
3 − 1

∼=
l − l 2τ3 r1−2τ

3

2τ
3 − 1

⇒

K−l+1−M
N

+
l

N1− 3
2τ

∼= 3l
1− 1

N1− 3
2τ

2τ − 3
,

where in the last step we used (26) to substitute r ∼= lN
3
2τ .

For N →∞, it is N1− 3
2τ →∞, and the above becomes

l̂ ∼=
2τ − 3

2τ

(
K + 1− lim

M

N

)
.

Thus, the assumption of l̂ > 1 is correct if K, limM/N
and τ are such that the second factor of RHS approximately
exceeds 1, i.e., M

lim

≤
(
K − 3

2τ−3

)
N . Then, from (26),

r ∼ 2τ − 3

2τ

[
(K + 1)N

3
2τ − M

N1− 3
2τ

]
.

Otherwise, l̂ = 1, and r is computed from (25) using (15)

NK−M+r−1 ∼= 3(r−1)
2τ
3

1− r1− 2τ
3

2τ − 3
.

As N →∞, it follows that r ∼
[

2τ−3
3 (KN −M)

] 3
2τ .

Proof of Theorem 19: First note that from Theorem 18, for
all τ , it is K

�
= Θ

(
KN−M+r̂−1

N

)
= Θ(1) (using M

lim

< KN ).

In the cases of τ < 3
2 ,M� 6= ∅ entails M

lim

> K
(
1− 2τ

3

)
N

(Theorem 16). It is also M
lim

< KN , thus M = Θ(N).
Furthermore, from Theorem 18 and M

lim

< KN , it is

r ∼ 3− 2τ

2τ
(KN −M) + 1

M
lim
<KN
= Θ(N), and, moreover,

r
lim

<
3−2τ

2τ

2τ

3
KN =

(
1− 2τ

3

)
KN

lim

< M. (44)

Then, we compute the link rate as follows:
Case τ < 1: Using Lemma 13, it is C� = Θ

(√
N
)

. Invoking

Lemma 12, too, we get that C = Θ
(√

N
)

= Θ
(√

M
)

.

Case τ = 1: C � =
√
N H1(M)−H1(r)

H1(M)

(15)∼
√
N

ln M
r

lnM = Θ
( √

M
logM

)
,

using r = Θ(N) = Θ(M). Similarly, as l→ 1,

C
�

=Θ

 H
3
2
2
3

(r−1)

K
1
2
�
H1(M)

 = Θ
( √

N
logN

)
. In total, C = Θ

( √
M

logM

)
.

Case 1 < τ < 3/2: Using r = Θ(N) = Θ(M),

C� =
√
N

Hτ (M)−Hτ (r)

Hτ (M)

(15)∼
√
M

rτ−1

[
1−
( r

M

)τ−1
]
,

which is C� = O
(
M

3
2−τ

)
from (44). Last, l→ 1 implies that

C
�
∼

H
3
2
2τ
3

(r−1)

K
1
2
�
Hτ (M)

= Θ
(
M

3
2−τ

)
. In total, C = Θ

(
M

3
2−τ

)
.

Case τ = 3/2: Now, it has to be M lnM
lim

> KN , which also
implies that M logM = Ω(N). From Theorem 18, we have
that r ln r ∼ KN −M . This means that r log r = Θ(N) in
view of M

lim

< KN , and thus r = o(N).

Moreover, comparing M lnM and r ln r in the above for-
mulas, it has to be r

lim

< M . The latter implies that there exists
a 0 < k < 1 such that eventually r

M ≤ k. Using then (18),

C�

(15)
= Θ

(
N

1
2

[
1

r
1
2

− 1

M
1
2

])
( r
M )

1
2≤
√
k

= Θ

(√
N

r

)

= Θ

(√
N

KN −M
log r

)
NK−M=Θ(N)

= Θ
(√

log r
)
.

Moreover, as l→ 1, C
�

= Θ

 H
3
2
1 (r)

K
1
2
� H 3

2
(M)

 = Θ
(
(log r)

3
2

)
.

Thus, in total C = Θ
(

(log r)
3
2

)
.

Case τ > 3/2: it is r = Θ
(
N

3
2τ

)
due to M

lim

< KN .

Moreover, for M � 6= ∅, it has to be M = Ω
(
N

3
2τ

)
. Then,

C� =
√
N
Hτ (M)−Hτ (r − 1)

Hτ (M)

((15))
= O

(
N

1
2 r1−τ

)
= O

(
N

1
2 + 3

2τ (1−τ)
)

= O
(
N

3
2τ−1

)
= O(1).

Last, C
�

= Θ(1) (all terms converge). Thus, C = Θ(1).

Proof of Theorem 20: In all the cases, we know that r ≤
KN − M + 1, as KN − M is the number of spaces left
for duplicate copies after all M files are stored once. Hence,
r = O(KN −M) = o(N) = o(M). Moreover, as before, in
all cases, K

�
= Θ

(
KN−M+r−1

N

)
= Θ

(
K − M

N

)
.

Case τ ≤ 1: From Lemma 13, r = ω(M) implies that C� =

Θ
(√

N
)

. Hence, invoking Lemma 12, C
M=Θ(N)

= Θ
(√

M
)

.

For the rest of the cases with τ > 1, it is r = o(M),
therefore, from Lemma 13, we get that C� = Θ

( √
N

rτ−1

)
.

Case 1 < τ < 3/2: Using r = Θ(KN−M) from Theorem 18,
C � = Θ

( √
N

(KN−M)τ−1

)
. On the other hand, l→ 1, and thus

C� =
H

3
2
2τ
3

(r−1)

K
1
2
�
Hτ (M)

=Θ
(√

N
KN−M r

3
2−τ

)
=O

( √
N

(KN−M)τ−1

)
. In

total, C
M=Θ(N)

= Θ
( √

M
(KN−M)τ−1

)
.

Case τ = 3/2: From the above, C � = Θ
(√

N
r

)
. Moreover,

C
�

=
H

3
2
1 (r−1)

K
1
2
�
H 3

2
(M)

= Θ
(√

N
KN−M log

3
2 r
)
.

However, 1
r = log r

r log r = Θ
(

log r
KN−M

)
= o

(
log3 r
KN−M

)
, thus

C � = o(C
�
). In total, C

M=Θ(N)
= Θ

(√
M

KN−M log
3
2 r
)

.

Case τ > 3/2: From Theorem 18, r = Θ
(

(KN −M)
3
2τ

)
=

o(KN − M) = o(M). Thus, C � = Θ

( √
N

(KN−M)
3
2
τ−1
τ

)
.

Moreover, C
�

= Θ
(
K
− 1

2
�

)
= Θ

(√
N

KN−M

)
(the H-terms

converge). As 3(τ−1)
2τ > 1

2 , it is C
M=Θ(N)

= Θ
(√

M
KN−M

)
.
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