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Abstract

Intersession network coding (NC) can provide significant performance benefits via mixing packets at wireless

routers; these benefits are especially pronounced when NC is applied in conjunction with intelligent scheduling.

NC however imposes certain processing operations, such as encoding, decoding, copying and storage. When

not utilized carefully, all these operations can induce tremendous processing overheads in practical settings.

Our testbed measurements suggest that such processing operations can severely degrade the router throughput,

especially at high bit rates. Motivated by this, we design NCRAWL, a Network Coding framework for Rate

Adaptive Wireless Links. The design of NCRAWL facilitates low overhead NC operations, thereby effectively

approaching the theoretically expected throughput benefits of joint NC and scheduling. We implement and

evaluate NCRAWL on a wireless testbed. Our experiments demonstrate that NCRAWL meets the theoretical

predicted throughput gain while requiring much less CPU processing, compared to related frameworks1
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1 Introduction

Intersession Network Coding (NC) enables the local processing and mixing of independent traffic flows.

Combining such flows at wireless routers can increase the available capacity [1–3]. However, such increase

is evident only when: (a) routers (which perform the encoding operations) are able to quickly identify

efficient coding opportunities that increase the NC gain; (b) packet decoders are able to correctly decipher

the encoded packets and acknowledge the decoded packets that they receive in diverse channel conditions;

and (c) the overheads imposed due to the inclusion of additional packet headers as well as packet processing

operations [4] are kept minimal. Moreover, while NC can increase the router throughput in random-access

networks [5], prior studies have shown that when the packets are scheduled carelessly, NC may not offer

significant benefits [2,6]. With multi-rate links, and when decisions are made based on statistical information,

scheduling is necessary to avoid packet losses. All these factors should be taken into account when designing

and developing practical, efficient NC algorithms and systems.

Implementing efficient wireless NC in practice is a challenging task: Although intersession NC

can theoretically offer unprecedented wireless router capacity benefits, realizing these benefits in practical

systems is by no means an easy task. Prior implemented efforts towards practical NC [3, 7–9] have demon-

strated throughput benefits at low transmission rates but have also discovered a series of complexity issues

arising in such implementations. Our testbed measurements suggest that it is quite challenging to map the

theoretically expected benefits offered by wireless NC in practical multi-rate deployments. This is due to

two reasons, which motivate our study; we explain them below.

a. The overheads incurred by NC may be excessive: With NC, routers need to be aware of the

packets that have been successfully overheard by each neighbor, in order to further decide which packets

to encode together and when. One method that has been proposed for addressing this requirement is by

enforcing every neighbor into explicitly acknowledging overheard packets (e.g. see [3, 7]). However, unless

clever implementation techniques are employed, this approach may not improve the performance; this is

because significant additional packet processing needs to be performed at routers, which may intrusively

increase the already imposed processing overhead. Thus, although the wireless channel may be conducive

to the use of high bit rates, routers may be incapable of transmitting as many packets in order to meet

those rates. Our experiments with various NC implementations suggest that with overhead-agnostic design

choices, the theoretical benefits offered by NC cannot be mapped in practice, due to the excessive processing

and network overheads that are imposed.
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b. Scheduling for NC has not been exploited in practice: Previous studies have demonstrated

the benefits of jointly applying NC and link scheduling [2, 6]. However, prior practical implementations (i)

have not incorporated any such techniques, and (ii) have not been designed to host scheduling algorithms

in an efficient manner. This necessitates the design of a broad, although lightweight framework, which can

facilitate the efficient coexistence of wireless NC and scheduling.

Our contributions: Towards addressing the above two issues, we design and implement NCRAWL,

a Network Coding framework for Rate Adaptive Wireless Links. NCRAWL has been optimized at each

stage of NC operations to utilize the router resources efficiently. It is a modular tool, which can host the

implementation of intersession NC schemes that are either standalone, or tightly integrated with scheduling

algorithms. The NCRAWL modules manage all the NC operations, such as encoding, decoding, storage and

routing in a lightweight manner, allowing for overhead-limited network operations. Note that to the best

of our knowledge, our framework is the first to facilitate the practical coexistence of NC and scheduling.

Theoretically shown throughput benefits can be easily assessed on NCRAWL and adapted for operating

on real networks with limited effort. We implement NCRAWL on Click as a Linux kernel module [10];

we evaluate our framework on a wireless testbed via measurements, under various indoor and outdoor

topological and traffic settings. Our experiments demonstrate that NCRAWL offers significant throughput

improvements even at high bit rate regimes, where previously implemented schemes are unable to operate,

due to excessive computational and networking overheads.

The scope of our work: Our focus is not on proposing optimal scheduling policies for NC, but on

developing an accurate, lightweight and easy-to-deploy experimental tool that can host NC and scheduling

schemes. Our system design and implementation decisions could be embedded into previously proposed

platforms, such as COPE [3], ER [7], CLONE [8], etc. However, we have chosen to implement NCRAWL

from scratch, instead of trying to modify such platforms, only because it has been much easier to implement

certain design choices in a particular, modular manner. Moreover, in this paper we focus on local NC,

where an encoded packet does not traverse more than one hop. This has direct applications in WLANs,

where clients exchange data via their associated access point, thereby enabling high-bandwidth applications

such as online gaming and video streaming. Note that NCRAWL can also be applied on top of multi-

hop topologies with long routes, where native packets are potentially encoded/decoded multiple times at

intermediate routers along their traversed routes.

The rest of the paper is structured as follows. In section 2 we discuss relevant previous studies. In

section 3 we provide a high level overview of the considered NC scheme. In section 4 we present the modular
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design and implementation of NCRAWL. In section 5 we demonstrate the strengths of our design through

a scheduling-driven case study. In section 6 we assess the performance of NCRAWL via extensive testbed

measurements. Finally, our conclusions form section 7.

2 Related work

In this section, we discuss previous related NC studies and differentiate our work.

Experimental studies on wireless coding: Katti et al. [3] propose COPE, the seminal implementation

of wireless NC. With COPE, routers are fully aware of packets that have been overheard by every neighbor.

For this, each node is required to inform the router about overheard packets. Experiments with COPE

on a wireless testbed show that even with very simple encoding operations, intersession NC can provide

significant capacity gains. Rozner et al. in [7] present ER, a scheme that adopts the design of COPE and

employs NC to perform efficient packet retransmissions. With ER, packets that need to be retransmitted

are coded together, such that one retransmission can recover multiple packet losses. Kim et al. [11] extend

the design of COPE to include NC-aware bit rate control and clever selection of nodes that acknowledge the

reception of encoded packets. Rayanchu et al. [8] propose CLONE, a suit of algorithms for NC that take

into account losses on wireless links. However, [7, 8, 11] all follow COPE’s logic regarding the dissemination

of information about which packets have been stored as keys. Moreover, these studies do not make online

decisions about whether to enable coding or not, based on the link quality. MORE [9] is a routing protocol

where routers perform random mixing of packets before forwarding them. MIXIT [12] encodes symbols

rather than packets. Similarly to MORE, batches of packets are coded together. However, since a packet

is a sequence of symbols, Intermediate relays use hints from the PHY layer in order to infer which symbols

within a packet are correctly received with high probability.

The above experimental approaches differ from ours in two main ways: (i) We consider the use of

stochastic information for overhearing instead of blindly acknowledging each particular packet. This allows

for efficient implementation and avoids computationally expensive packet processing operations. Note that

our design choices can also be applied to most of the above approaches. (ii) NCRAWL is a “tool” for

studying problems regarding joint NC and scheduling with feedback, and can potentially be intertwined

with an optimal algorithm to provide the best solution within the class of implicit ACK schemes. To the

best of our knowledge, our work is the first to provide a coherent, lightweight framework for practically

assessing joint NC and scheduling schemes.

Analytical and simulation NC studies: In the recent literature there exists a series of astonishing
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theoretical results regarding NC in wireless networks. Lun et al., in [13], show that the problem of mini-

mizing the communication cost can be formulated as a linear program and solved in a distributed manner.

Chaporkar and Proutiere [2] show that unless appropriate scheduling is applied, NC may lead to performance

degradation. We support this claim by identifying an additional example when implicit ACKs are used. Liu

and Xue in [14] consider NC for two-way relaying in a three-node network. They analytically characterize the

achievable rate regions for the traditional Alice-Relay-Bob topology, and they find the theoretically optimal

end-to-end sum rates. Scheuermann et al. [6] propose noCoCo, a deterministic packet scheduling scheme

for NC within two-way multihop traffic flows. Their scheme involves per-hop packet scheduling, NC and

congestion control. Seferoglu and Markopoulou in [15] provide an understanding of the interplay between

application data rate control and NC. Finally, Vieira et al. [16] provide observations on how the combination

of NC and bit rate diversity affects the performance of practical broadcasting protocols. They show that it is

possible for multi-rate link layer broadcasts and NC to jointly increase the network throughput in multicast

applications. More theoretical results can be found in [17] with the list being non-exhaustive.

In recent theoretical work [18] it is shown, that for the 2-user case, maximum throughput can be achieved

without explicit ACKs, i.e. by utilizing scheduling algorithms that guess, code and then correct the trans-

missions using feedback. In particular, this scheme has no loss of optimality if either the downlink channel

rates are equal for the two receivers or if the overhearing probability at the slow receiver is 1 (perfect over-

hearing). Moreover, whenever the overhearing probabilities are high enough (> 0.6), the loss of throughput

in comparison to the explicit ACKs is very small (< 5%). This motivates further our work, which is in line

with such schedulers. In particular, our framework enables the implementation of such algorithms for reasons

of performance analysis and prototyping. We believe that the experimental evaluation is very important

since the complexity of some of the newly proposed approaches may degrade the performance and result in

smaller benefits than compared to the theoretically predicted ones.

3 Network coding scheme

We study topologies that include 2–hop flows crossing a central node, as shown in Figs. 1-2. The central

node, called the relay (or router), is connected to all other nodes, called neighbors. Links between neighbors

may exist as well. Each link connecting nodes i and j is characterized by two channel rates rij , rji and two

probabilities qij , qji which correspond to the Packet Delivery Ratios (PRD) in each direction.

In the uplink part (the first hop of these flows), native packets are transmitted without NC towards the

relay. In the downlink part, the relay selects a number of native packets, applies the XOR operator and
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Figure 1: Example topologies supported by NCRAWL: (left) The x
2–wheel with x+ 1 nodes and x

2 activated
flows. (right) The 6–wheel topology, grey arrows represent flows and black arrows represent overhearing
links.

Figure 2: Example topologies supported by NCRAWL: (left) The 4
2–wheel also called half-cross, (middle)

the 4–wheel topology also called cross and (right) an arbitrary subgraph of the 6–wheel topology.

transmits the constructed encoded packet. If a receiver recognizes its address in the header, it attempts to

perform decoding in order to obtain the intended native packet. To achieve this, the receiver should be in

possession of all the other native packets that comprise the encoded packet, in order to perform decoding.

These packets are known to the receiver either because they have been generated by it (in case of symmetric

flows) or because they have been obtained by means of opportunistic listening, i.e. overhearing of the

uplink transmissions [3]. Packets that are successfully obtained are acknowledged to the relay via a separate

mechanism that operates in a higher layer (feedback packets are generated and sent to the relay), see §4.2.

In order to experiment on high gain topologies, we consider two particular classes of topologies which

we name as x
2–wheel and x–wheel; these names are inspired by [3]. Such topologies are ideal for performing

wireless NC, since they allow a maximum number of employed 2–hop flows to be mixed due to the existence

of appropriate overhearing links. For example, in Fig. 1 (right), the relay may encode 6 packets and send

them in one transmission, while the decoding is guaranteed due to the existence of appropriate links (black

arrows). A constructive way to build an x
2–wheel topology is the following: Split the neighbor nodes in two

equal sets (x must be even), the source and the destination set, and select a matching of these two sets which

corresponds to x
2 flows (pairs of nodes). Then, allow all nodes (the relay and the neighbors) to be connected

except those that are paired in the above selected matching. Finally, create x
2 more flows by inverting the

roles of source and destination. If only the initial x
2 flows are enabled, we refer to the topology as “x

2–wheel

setting”; otherwise, if all x flows are enabled, we refer to it as “x–wheel setting”. See Figs. 1-2 for examples

of such settings wherein NC can be applied.
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Evidently, the 2–wheel setting corresponds to the well known Alice-Relay-Bob topology. Throughout this

paper, we also use 4
2–wheel settings (referred to as “half-cross”) and 4–wheel ones (referred to as “cross),

as well as a 6–wheel setting, wherein we activate the flows serially, one after the other (again see Figs. 1-2

above). We should point out that NCRAWL supports any random subgraph of the N–wheel topology with

any possible set of flows activated on top of it. In addition, it supports settings with any possible combination

of link qualities and/or channel rates. The wheel topology is the most general topology to be considered

around a single node. Any actual network topology can be reduced to a subgraph of a wheel topology, if the

nodes, links and flows irrelevant to NC on any given node are removed. Since NCRAWL runs on all nodes

in the network, our scheme works with any arbitrary network topology, providing the maximum possible

local NC gain subject to some constraints we explicitly mention below. As we discuss later, the encoding

opportunities at each node are automatically discovered by the combination of NCRAWL and SRCR [19].

Hence, NCRAWL operates under any assumed graph providing throughput gains opportunistically. We

study the wheel setting where the maximum such gains arise, in order to showcase that NCRAWL can

achieve it in many cases despite the overheads and complexity induced by NC.

We have incorporated the following features in order to demonstrate the practicality of NCRAWL in a

tractable manner:

• The XOR (binary field) operator is used instead of more general linear coding, similarly to [3].

• We enforce the decoding of encoded packets at the next hop, since this is practically the most possible

case in today’s wireless access deployments. Multihop flows can still benefit from our scheme by

cascading the 2-hop coding operations.

• Only native packets are stored as keys.

• We consider the use of implicit ACKs of overheard packets, as we explain below.

• We use equal packet size (maximum MAC PDU); if a packet has smaller number of bits, we pad with

zeros.

The decision on imposing these features is justified by the necessity to keep the NC scheme simple,

practical, implementable and efficient in terms of processing overhead. Clearly, the modular nature of

NCRAWL allows the development of more complex features, taking into account potential application and

policy/administration requirements.
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4 Architectural Blueprint

In this section, we describe the modular design and implementation of NCRAWL.

Employing Click as the basis of our framework: NCRAWL has been developed in the Click

modular router framework [10]. Click can be used to develop primarily OSI layer 3 packet processors, which

can be directly deployed inside the standard Linux network stack. A Click processor is mainly comprised

of (a) processing stages which are called elements and (b) an element interconnection configuration that

indicates the processing flow. Execution in Click is event-driven, with four different types of asynchronous

events, namely the incoming packet event, the ready-to-forward packet event, the timer expire event and

the external read or write events to Click memory. Since all Click events are asynchronous, a Click packet

processor leverages internal queues to temporarily store incoming packets, since they are to be forwarded

asynchronously.

In what follows, we describe the NCRAWL system design and implementation. We also present the

NCRAWL interface that can be used to develop new algorithms, as well as for deploying and managing

experiments on wireless testbeds.

4.1 Design preliminaries

NCRAWL realizes an OSI layer-2.5 protocol that lies immediately under the routing layer. More specifically,

it can be considered as an extension to the Click modular router implementation of the SRCR protocol [20],

which is the heart of the MIT Roofnet wireless network. NCRAWL operates below the routing layer; this

simplifies the format of the NCRAWL packet headers, which are now used only to encapsulate encoded

packets, and carry the corresponding ACKs for successful decoding back to the sender. The NCRAWL

header formats are depicted in Fig. 3. Network-wide unique 32-bit packet identifiers are used by applying

the sdbm hashing algorithm [21] on data tuples that are comprised of packet source IP, the IP header

sequence number, and the respective offset.

4.2 NCRAWL System Description

Next, we discuss the modular design of NCRAWL in detail. Our platform is based on a Click network

packet processor that includes the SRCR routing protocol implementation for wireless networks [20]. We

have included two additional processing stages: the NCRAWL decoder and the NCRAWL encoder. We have

developed these stages as individual Click elements, and we have placed them before the beginning and after

the end of the SRCR processing flow, respectively, as depicted in Fig. 4.
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Figure 3: NCRAWL header format. The Ethernet header magic number distinguishes between encoded
packets and ACK headers which are otherwise identical.
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Figure 4: NCRAWL framework system components and their interaction.

a. NCRAWL acknowledgements (implicit acks): As opposed to [3], which uses explicit ACKs,

where each successful overhearing of a packet is acknowledged to the router2, NCRAWL uses ACK packets

only for verification of correct decoding. Following the transmission of a coded packet, the router expects

layer-3 ACK messages from the intended receivers of the coded packet. This takes place for two reasons:

• The router obtains MAC-level ACK only from one receiver; thus without the layer-3 ACK, the router

cannot be notified of a loss that has occured at the other intended receivers.

• Since the overhearing events are unknown to the router, it is impossible to know if the decoding was

successful (i.e., if the receivers have the necessary keys in their buffers).

2Recall that the role of the router in an ad hoc setting might be played by virtually all nodes in the network
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Note, that a NACK (negative ACK) architecture is possible if the broadcast 802.11 mode is used. If NACKs

are used, the overhead of ACK messages can be reduced significantly in practical scenarios (95% reduction is

possible). Even with the ACK architecture though, ACK messaging is reduced due to the lack of unnecessary

overhearing ACKs.

The router holds a buffer for the packets to be acknowledged. When an ACK arrives, the buffer is

inspected and the acknowledged packet is removed. The buffer has a periodic timer and each packet is

stored in the buffer for at least a specific period. When the timer expires, packets found to have been stored

for more than that period, are analyzed and the corresponding non-acknowledged native packets are sent

back to the system queues with the information of ”decoding failure”. Note that a decoding failure can be

attributed either to MAC failure or to inability of the intended receiver to decode (lack of proper keys).

Note also that a timer-expire event triggers the transmission of ACKs in separate packets when there is not

enough outgoing traffic to piggyback them (Fig. 4).

b. The packet decoder: The main tasks of the decoder module are the following:

• To use the available (from overhearing or ownership) key packets in order to decode the received

encoded packet.

• To schedule the transmission of layer-3 acknowledgements (ACKs) for the correctly retrieved native

packets, derived by the decoding operation.

• To determine any potential pending ACKs, as well as to verify any received ACKs.

• To tag and store all the correctly overheard data packets as potential keys; as discussed above, these

will be potentially used in the near future for decoding the received encoded packets. Moreover, the

key repository is used for packet retransmissions, in case an expected ACK never arrives.

The decoder resides at the packet receiving side of the system and is invoked by the corresponding packet

arrival event.

c. The NC packet encoder: The NCRAWL encoder element resides at the sending side of the system

and is more complicated, since it maintains and manages the processor packet queues. A part of the element

handles incoming packet events, another part deals with outgoing packet events, and there is also code that

gets invoked upon timer expiry as well as read and write Click configuration events (Fig. 4). It is this

element that exports the framework API which can be used to develop NC algorithms. Specifically, the

main assigned tasks for this module are the following:
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• To process and place incoming native packets into specifically maintained queues. Our system supports

a plurality of queueing operations, which can be configured as per the requirements of the NC algorithm

under development.

• To identify and combine packets together, towards forming encoded packets. The selection of the

appropriate packet set follows the directions of the NC algorithm under consideration, supported by

NCRAWL.

• To piggyback any ACKs (through the use of scheduled, upcoming data packet transmissions) that have

been scheduled by the decoder element.

• To generate potentially expected ACK tokens for each of the native packets comprising an encoded

packet.

d. Maintaining up-to-date topological information: The link metrics updater is responsible for

collecting information about the transmission rates and PDR values of the links with neighbors. This

information is gathered and passed to the rest of the system via the Click memory write event mechanism.

Furthermore, the software procedures that set and apply the encoding combination policies are invoked as

needed.

Gathering link quality information: The NCRAWL updater relies on the SRCR protocol component

[19], which maintains link connectivity information and performs periodic link measurements. SRCR sends

probe packets at all rates to determine the PDR for each link and chooses the highest rate that performs

well. PDR information is then used by SRCR to calculate the ETX or ETT metric [22, 23], which provides

information about entire routing paths (not just 1-hop links). This information is kept in the SRCR link

table, and is accessible by the NCRAWL components. The SRCR measurement period can be set as desired

(the default value [19] – also used in our work – is 3 sec).

Collecting information about neighbor node links: Based on the information stored in the SRCR

link table, the link updater maintains its own so-called Neighbor Table (NT), which includes information

for its neighbors. Initially, the NT is empty. The updater periodically reads the SRCR link table and

updates NT as needed. The NT contents are updated whenever (i) a new neighbor appears, (ii) an existing

neighbor disappears, or (iii) a certain link quality changes. In such cases, the NCRAWL updater broadcasts

a packet with the new NT contents and sets a timer. When such a NT packet is received (overheard) by

other nodes, their corresponding updater utility replies by broadcasting its NT, provided it has not done so
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recently. Specifically, in order to avoid excessive network overheads due to such messaging, we leverage a

NT reply suppression threshold; while the value of this threshold is tunable (and can be configured based on

network and application dynamics), we set it to be equal to the SRCR broadcasting interval period. The

NT packets are used by the NCRAWL updater to maintain the so-called Received NT Table (RNTT), which

complements NT by storing information about the link quality, as measured by neighbors.

Feeding NC algorithms with updated topological information: Each time the updater modifies

the contents of the NT or RNTT (i.e., each time it proactively sends or receives a NT packet which leads

to an update of the RNTT) a timer is set. Upon timer expiry, the new link qualities are passed to the

main NCRAWL system, where they will potentially drive adaptive NC decisions, based on the NC designer’s

needs. This timeout is (generously) set to 1 sec, providing ample time for any NT reply packets to arrive.

The timeout value can be set based on the dynamics of the network on which NCRAWL is applied. Note

here that overheads are kept low with NCRAWL, since the updater employs its own threads of execution to

perform these information maintenance tasks; the current implementation uses 2 threads, but these remain

suspended most of the time, making this component quite lightweight in terms of CPU occupancy. Note

that the implementation of the NCRAWL updater can be trivially adjusted to cooperate with other link

information gathering protocols as well, i.e., it is not tied to SRCR.

e. NCRAWL logger: The read events are used by another utility, the NCRAWL logger, which gathers

various statistics that are generated online by both the encoder and decoder.

Utilizing resources effectively: Efficient resource utilization is an inherent property of NCRAWL.

The repository that stores copies of packets uses a FIFO queue as the main indexing mechanism and can

host up to a user-defined quantity. After the storage limit is reached, the oldest packet is removed in order

for a new one to get stored. The same packets are also indexed in a hash table based on their network-wide

unique identifiers. The hashtable is used to quickly retrieve packets used either as keys for decoding, or for

re-sending them in case an expected ACK token expires. The same indexing approach has been used for the

ACKs and expected ACK tokens as well.

4.3 Implementing NC algorithms

NCRAWL exports an API (Application Programming Interface) that can be used to implement scheduling

algorithms for intersession NC. This API is a library of functions that can be used to carry out NCRAWL

common tasks and mandatory function extensions to the handling code of each event. Points of extensibility

and/or programmability are denoted in Fig. 4 with shadowed boxes.
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Implementing packet handling operations: Regarding the incoming packet event, the designer

should account for placing arriving packets into proper queues. In particular, each flow is associated with

a queue, and the scheduler checks all available controls, i.e. activates a set of queues by combining one

packet from each queue. It maintains a list with the expected score (reward) of all controls and selects one

of those controls at each time instance. The controls that activate only one queue correspond to the case of

transmitting native packets. It is always possible to deactivate NC by imposing the use of only those latter

controls. With this, the developer may implement logic that disables NCRAWL when needed. Furthermore,

after the placement of the incoming packet, the developer may: (a) invoke the function that chooses the

next encoded packet queue combination according to the NC algorithm, (b) retrieve the packets from the

respective queues, (c) encode them and schedule the encoded packet for transmission by placing it into the

outgoing queue. This operation may be repeated until the outgoing queue contains a user defined number

of packets. Apart from the queue combination retrieval function, which needs to be implemented by the

algorithm developer, the rest of the required functionality is already seamlessly provided by NCRAWL.

Implementing the core NC logic: The main algorithm implementation takes place in the context

of the Click memory write event, generated by the NCRAWL updater. The latter provides the user with a

table of links with entries denoted by the corresponding source and destination IP pairs. Each entry holds

the link direction, the PDR and the transmission rate. This information can be used by the NC algorithm

to decide upon valid NC combinations by selecting the queues to activate together. Since this part of the

code runs periodically, the developer is encouraged to implement any complex algorithm steps here, and

thoroughly index the NC available combinations. With such an approach, the overhead of choosing the most

beneficial packet combination during the incoming or outgoing packet events is minimized.

Sending data and ACK packets: The outgoing packet event checks the size of the outgoing packet

queue. If this is below the defined (configurable) threshold, the functions that choose and encode combi-

nations are called. The developer may also add logic for the handling of ACKs. By default, NCRAWL

resends packets that have not been acknowledged, by directly placing them on the outgoing queue. Note

that NCRAWL allows the development of algorithms that deal with the failed packets in a different way

(see section 5 for an example). Since NCRAWL groups ACKs that belong to the same encoded packet, the

scheduling algorithm knows which packets have been decoded successfully at which destination, and hence

may further decide whether a packet should be resent directly, or potentially re-considered in encoding

combinations.
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System monitoring: Our framework allows for user defined timer events. Statistics for incom-

ing/outgoing packet activity as well as queue lengths are all logged using counters. The NCRAWL logger

periodically retrieves statistics and notifies the user at runtime about the flow stability and the corresponding

queue lengths. The latter are also available for use in the NC algorithm if needed. Finally, the developer

may also implement additional debugging support for inspecting the algorithm configuration at runtime,

using Click’s read handler.

4.4 Deploying NCRAWL Experiments

We have integrated NCRAWL deployment scripts with the OMF framework [24] for wireless testbeds, as an

optional feature. OMF is a Control, Management and Measurement Framework that provides users with

tools to easily describe, execute and collect testbed results. NCRAWL leverages the following OMF utilities

(see [24] for details):

• Gridservices: This is a set of web services that are used by OMF to fetch information and perform

actions remotely on the nodes.

• Nodehandler: This component resides on the central server that interacts with the user for the

experiment submission. Moreover, it provides the necessary applications for node system image loading,

experiment execution, image saving and node status check.

• Nodeagent: This component obtains instructions for the experiment deployment, arriving from the

nodehandler.

NCRAWL extensions have been written for both nodehandler and nodeagent. The former performs transfers

of the Click executable along with user defined parameters. The latter retrieves local node information (e.g.

the network interface name and MAC address) and then parametrizes a generic NCRAWL deployment script.

Finally, the nodehandler is notified if the deployment was successful. With OMF, NCRAWL experiments

can be deployed with minimal user effort.

5 Case study

This section demonstrates by example how the NCRAWL framework allows for easy implementation of

scheduling algorithms. We also discuss a case study which we use for the assessment of NCRAWL in the

next section.
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At each WiFi transmission opportunity, the scheduler selects a number of packets, encodes them and

sends the encoded packet to the MAC layer. The problem is of scheduling nature: which are the best packets

to select considering the queue backlogs, the transmission rates and the overhearing probabilities? Note that

selecting only one packet corresponds to transmission without NC.

A well known family of optimal algorithms for scheduling is the maximum weight (maxweight) algorithms,

applied in the stability theory of stochastic networks and input queues switches, see for example [25,26]. In

these algorithms, control actions are chosen to maximize a reward that depends on the product of link rates

and queue lengths. The application of such algorithms towards solving the joint NC and scheduling problem

with arbitrary rates is then promising [27].

For the case of the implicit ACKing scheme used by our framework, one observes that the actual rate

of service is random. The randomness comes from the decoding; the scheduler (at the relay node) does not

know a-priori whether packets needed for decoding are missing or not by some of the receivers. Nevertheless,

a NCRAWL equipped relay knows the probabilities of overhearing and is then in position to determine the

probability of decoding and thus the expected service rate. Let C represent a selected subset of receivers

(neighbors of the relay). If the scheduling decision is C, then the reflected action is to combine the first

packet from each of the queues with packets destined to nodes C, and send to the MAC layer the coded

packet. The expected service rate for receiver i ∈ C with such an action will be:

µi(C) = min
j∈C
{rj}

∏
j∈C

j 6=i

qsj ,di
, (1)

where minj∈C{rj} determines the actual transmission rate with this action, and
∏

j∈C

j 6=i
qsj ,di

determines the

probability of decoding at receiver i. Here we have assumed that the overhearing events are independent.

This is a realistic assumption since the time and space for each overhearing event is different. Collisions and

Rayleigh fading may be the causes for this randomness. Below we discuss some example algorithms that can

be implemented and assessed with NCRAWL.

5.1 Algorithm 1

Let Qi be the queue backlog at the relay for flow i, and C the set of all possible control actions. Algorithm

1 searches set C for the action that maximizes the total expected service rate.

Algorithm 1 is throughput-optimal under the condition that the random decoding event distribution

does not change during transmissions and thus, the expected service rate computed above is accurate. This

happens when (i) the probabilities are 0 or 1, as in Alice-Relay-Bob topology (and any other symmetric flow
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Algorithm 1: MaxWeight Algorithm without feedback

Input: Qi, µi(C)
Output: C∗

C∗ := arg maxC∈C{
∑

i∈C Qiµi(C)};

setting), or when (ii) upon a decoding failure we reschedule the uplink transmission for the failed flow. The

latter may arise e.g. in a TCP scenario. In the general case, however, whenever a particular encoded packet

is not correctly decoded, extra feedback information is obtained and the expected service rate changes. If, for

example, P1⊕P2 is not decoded by both receivers, the relay knows that these two packets are not overheard

by receiver 2 and 1 respectively, and they should not be coded together again. The impact of feedback

clearly biases the probabilities of decoding. Therefore, in the general case, Algorithm 1 is not optimal; also,

when the overhearing probabilities are quite small, it might perform quite badly.

5.2 Algorithm 2: the case of two flows

Utilizing feedback information for making scheduling decisions is a notoriously difficult problem. In [28,29] an

optimal scheduling algorithm is discussed, which however requires a significant number of calculations, since

it operates on a virtual network with O(4N ) virtual queues, where N is the number of physical neighbors.

Here we discuss a simple myopic scheduling algorithm that is not optimal, but is able to effectively utilize

feedback and outperform Algorithm 1. For tractability we discuss the case for two flows; note that it can be

extended to the case of arbitrary number of flows and pairwise coding.

In order to cope with feedback, we add two more knowledge states. Apart from unknown (newly arrived)

packets whose behavior is captured by known probabilities, we have a state for good packets (successfully

overheard) and one for bad packets (those not overheard), where the scheduler has deterministic knowledge

of the decoding event. Given this, the system maintains the queues Qs
i where i ∈ {1, 2} signifies the flow

and s ∈ {u, g, b} signifies the state. The new set of controls C2 contains all controls that activate one or

two queues with the constraint that no two queues from the same flow can be activated. The packets are

initially injected in the queues corresponding to the unknown state. Once a packet is not decoded properly,

the relay classifies it as either good or bad, based on feedback information. If it is bad, it is retransmitted

without encoding. If it is deemed as good, it is transferred to the corresponding queue at the good state

(Qg
1 or Qg

2 depending on the flow it belongs to). When calculating average service rates, the packets at the

good state have probability of overhearing equal to one. Apart from these alterations, algorithm 2 works in

the same way as algorithm 1.
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Algorithm 2: Myopic Algorithm with feedback

Input: Qs
i , µ

s
i (C)

Output: C∗

At feedback time:

• For each packet that was not correctly decoded, define
whether it is good or bad using the decoding event of the paired packet.

• Bad packets are directly sent to the MAC layer for
transmission without coding.

• Good packets are sent to the corresponding queue at the good state.

At decision time:
C∗ := arg maxC∈C2{

∑
i∈C Q

s
iµ

s
i (C)};

5.3 Algorithm 3: fixed threshold policy

This algorithm operates only with implicit ACKs and makes decisions based on principles used in the

COPE framework. In this sense, it emulates COPE in its probabilistic mode. An important difference is

that, instead of calculating average service rates, Algorithm 3 (namely δ–Fixed Threshold Policy or δ–FTP)

simply compares the overhearing probabilities qi,j with a fixed threshold δ ∈ [0, 1], and sets them to 1 if

they exceed the threshold or zero otherwise. The algorithm selects at each decision instance the control that

maximizes the number of transmitted packets.

5.4 Implementing the three algorithms in NCRAWL

Next, we demonstrate how to implement the three above algorithms on NCRAWL. For all three cases, we

configure NCRAWL at each node to maintain one queue per flow for incoming packets.

Implementing algorithm 1: We first describe how one may organize queues in an efficient manner.

Subsequently, we show how to utilize the queue information to apply NC.

• Organizing packet queues: To begin with, we dedicate one vector per control C which contains the

identity of the involved queues (e.g. the flow it belongs to and/or the state) and the identities of the packets

enqueued at the involved queues. The formed vectors are stored in a double linked list. Each vector is

assigned a weight (see the argument of the maximization in the above algorithms); the higher this weight,

the higher the preference of the encoder for using the combination. This weight is recalculated every time

the backlog size of a member queue changes. The linked list is formed such that the head of the list contains

always the current maximum weight. For the sake of low processing overhead, vectors are also directly

indexed by their member queues; with this, the weight update process is fast. Vectors as well as their linked

list are all constructed during the NCRAWL updater write event.

• Applying NC operations: Given the construction of the control list, the encoder event examines the
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head of the list, and further: (a) retrieves packets from their respective queues, (b) updates the vector

weights (since the respective backlogs are decremented), and (c) sets the vector with the highest weighted

combination as the head of the list. The latter is actually a process with slowly scaling complexity with the

number of vectors-combinations, since each updated vector weight is just compared against the weight of

the current head, and only takes its place if it is higher. Retrieved packets are subsequently combined using

the NCRAWL encode library call, and the resulting encoded packet is scheduled for transmission.

Implementation considerations for algorithm 2: This algorithm is similar to algorithm 1, however

it involves an additional acknowledgment scheme logic. Therefore, for each flow NCRAWL now maintains two

queues: (a) one with new incoming packets, and (b) one with packets that have been successfully logged as

keys by fellow nodes, but have not reached their ultimate destinations3. Algorithm 2 exploits the NCRAWL

acknowledgment scheme facility; this process groups the packet acknowledgment tokens, which have been

created for outgoing packets combined together in the same encoded packet. This information is provided by

NCRAWL to the developer. Algorithm 2 directly sends packets that have not yet reached their destinations;

such packets are not reconsidered for encoding. However, the algorithm considers favorable queues and

“unknown” queues for the same flow separately, when forming vectors. Note that the vectors formed with this

algorithm scale intrusively, compared to the simple maxweight algorithm described previously. Throughout

our measurements we only consider the scenario of two flows and thus avoid the arising complexity. This

issue is expected to be resolved in the future using the NCRAWL framework.

Algorithm 3 in NCRAWL: For the implementation of the third algorithm we simply need to create

vectors, (i.e. controls or queue combinations) for which the decoding probability is nonzero, according to

the user-defined threshold δ and the channel quality. As soon as packets are available in all queues that

constitute a vector, they are combined and transmitted at once, without considering or updating the queue

backlogs. This algorithm selects controls that mix the largest possible number of packets each time.

Note that as opposed to COPE [3], NCRAWL does not use any time-threshold policy towards increasing

the backlog size of the incoming packet queues, before deciding to send outgoing packets. With NCRAWL,

queue backlogs will increase when the relay’s outgoing packet rate is smaller than the incoming packet rate.

In such cases, NC proves to be a panacea for the router stability; if the NC algorithmic operations are

supported by a lightweight implementation, the router capacity can be truly increased, as our measurements

suggest.

3For example this could be due to the fact that the destination failed to decode properly a previously sent encoded packet.
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6 Evaluating our Framework

In this section, we evaluate NCRAWL in conjunction with scheduling algorithms (NCRAWL + alg1,

NCRAWL + alg2 and δ–FTP) described in section 5, in terms of both throughput and resource utiliza-

tion. We begin by describing the wireless testbed infrastructure and the configurations that we used to

deploy experiments. Next, we quantify the CPU overheard that is introduced by each NCRAWL process-

ing stage, under maximum traffic loads, and we compare total CPU utilization to: (i) the public COPE

implementation that uses an explicit acknowledgment scheme and (ii) legacy IEEE 802.11b-g. Following,

we demonstrate that NCRAWL can support theoretical gains even when coding opportunities lead to more

than 2-packet combinations. Finally, we deploy experiments that demonstrate how the proposed algorithms

perform in cases with variable link qualities and different rates.

6.1 Experimental setup

Our testbed is comprised of 20 ORBIT nodes, deployed both indoors and outdoors, in the Department of

Computer Engineering and Telecommunications, at UTH. Each node consists of one 1 GHz i386 processor,

512 MB of RAM, two Ethernet ports and two miniPCI slots which are used to host two AR5212 Atheros

802.11a/b/g WiFi cards. UDP and TCP traffic is generated using the iperf software tool [30]. For CPU

occupancy measurements we appropriately instrument NCRAWL with the Linux getrusage system call, which

accurately estimates CPU usage time. We place several getrusage calls at the borders of each processing

stage, we record the average usage time of each stage and we compare it to the whole NCRAWL system

usage time. We have repeatedly performed all of our experiments late at night, in order to avoid interference

from collocated networks.

6.2 CPU occupancy measurements

In order to measure the efficiency of our framework in terms of CPU occupancy, we compare it to the case

of running COPE [3], as well as the legacy IEEE 802.11 protocol.

NCRAWL is more CPU friendly than previous approaches: We invoke the Alice-Relay-Bob

setting (see section 3) and we inject fully saturated traffic in both flows. We compare NCRAWL + alg1,

NCRAWL + alg2, COPE and the plain 802.11, for the case of 802.11b; Fig. 5 depicts the results. Note

that COPE can support at most the IEEE 802.11b rate set as discussed in section 1; for the sake of a fair

comparison here, we use this mode of operation for NCRAWL as well. We observe that NCRAWL makes

use of the CPU resources in a very efficient manner: it reduces the CPU utilization by at least 2 and as much
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as 7 times compared to COPE (we have validated these observations for the case of ER [7] as well, which

is based on COPE). Furthermore, we test NCRAWL for the case of 802.11g. Our measurements (Fig. 6)

suggest that NCRAWL does not need to occupy more than 37% of the CPU resources for NC operations at

54 Mbps, with fully saturated UDP traffic. This implies that the design of NCRAWL includes low additional

overhead functions (as opposed to legacy 802.11).

Evaluating individual operations of NCRAWL: Next, we deploy getrusage calls and measure the

breakdown of CPU occupancy per processing stage (Fig. 7). The most CPU intensive operation is the

SRCR stage (it contains legacy IEEE 802.11 operations as well). The most computationally heavy pieces of

NCRAWL are the encode stage and the key house-keeping4. Note here that these two lie at the heart of any

NC system and in a way represent unavoidable costs. It should also be noted that the processing stage of

the scheduler remains at very low values and there is a certain percentage dedicated to dealing with ACKs.

4Key house-keeping refers to operations over a hash structure maintained for packet identification.
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put improvements due to
NCRAWL over plain 802.11g
are pronounced at all trans-
mission rates.

Furthermore, as depicted in Fig. 8, by increasing the channel rate (and thus the number of packets into the

system per unit time), the coding stage increases in complexity disproportionally with the SRCR stage. This

implies that the coding complexity increases faster than SRCR as the rate increases. Nevertheless, for high

channel rates the differences are reduced. This suggests that NCRAWL could potentially operate efficiently

at much higher channel rates, such as with 802.11n systems. We plan to test NCRAWL on MIMO networks

in our future work.

6.3 Throughput measurements with UDP

Next, we assess the ability of NCRAWL to approach the theoretically expected benefits of NC.

Experiments with the simple Alice-Relay-Bob topology: We calculate and measure the maximum

throughput for both symmetric flows, such that the system remains stable (i.e. the queues do not rise more

than a large permissible number). Figs. 9, 10, 11 and 12 show the results. Note that since the receivers
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it is able to use feedback in-
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always have the proper keys (these are the keys from their own transmitted packets [2]), decoding is always

possible and thus algorithm 1, algorithm 2 and COPE are optimal in this setting. In each case, a gain in

throughput of 4
3 is identified, which matches the theoretical for this topology. Our measurements suggest

that COPE achieves the theoretical throughput for small rates, but it fails to do so in higher rates. Note that

the public COPE code was initially available for 802.11b only; while we carefully modified COPE to operate

at 802.11g rates, we observed that such modifications lead to a very unstable system when rates higher than

18 Mbps are used. A closer look at certain individual components of the COPE implementation revealed that

the reason for this instability is the excessive overhead induced by the NC system operations (as discussed

earlier). For this reason we do not explicitly compare COPE here at these high rates. Nevertheless, from

these measurements one can realize that COPE cannot provide benefits at rates higher than 18 Mbps, due to

the tremendous CPU processing overheads that its design incurs. In contrast, NCRAWL manages to reach

the theoretical gain at high channel rates (e.g. at 54 Mbps), as shown in Figs. 10 and 12.
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The case for wheel topologies: Furthermore, we scale the number of flows (see Figs. 13 and 14); the

topology is an x
2–wheel. The theoretical gain in this case is 2x

x+1 where x is the number of flows combined at

the downlink. Our measurements support the theoretically predicted gain at the channel rate of 54 Mbps.

We observe the per flow throughput naturally drops, as the number of flows increases, but the aggregate

throughput increases. The gain (Fig. 14) is an increasing function of flows and approaches asymptotically

2; note that this is perfectly aligned with the findings in [2] as well. Note also that in x
2–wheel topologies,

piggybacking is not available since there is no return flow from the receivers. NCRAWL is able to select the

appropriate ACKing method and the results show that the overhead incurred is negligible.

Experiments with cross topologies: We now present two more cases of interest that can appear in

realistic environments. We setup various cross topologies with nodes in different locations across our testbed;

we activate the flows Alice-Relay-Chloe and Bob-Relay-David. The arrivals are again chosen in a symmetric

way, i.e. the arrival rate of the one flow is equal to the other.

• In the first case (Fig. 15), David overhears Alice’s uplink transmissions with probability 1 and Chloe

hears Bob with probability q. The rates of all links are equally set to 12Mbps (the channel rate is not impor-

tant in this experiment). We measure the highest throughput that guarantees queue stability while varying

the probability q, by considering different node locations. We compare NCRAWL+alg1, NCRAWL+alg2

and IEEE 802.11g as well as δ–FTP for δ = {0.7, 0.8, 0.9} (see section 5 for description). The results

demonstrate the superiority of NCRAWL+alg2, which is able to deliver the maximum throughput in each

case. Evidently, our framework in combination with the proposed scheduling algorithms is able to effectively

handle the several link quality conditions.

• In the second case (Fig. 16), the overhearing probability from Bob to Chloe is set to q = 0.7. All

channel rates are set to 24Mbps with the exception of the link Relay-Chloe which is varied. Our measurements

demonstrate the inefficiency of policies oblivious to rates like the δ–FTP. In this case, the choice of a small

value for δ is penalized when the Relay-Chloe link is slow enough. Instead NCRAWL+alg2 is able to handle

in an effective way the several rate and link conditions and deliver important throughput gains. From figs.

15 and 16 we also observe that given that overhearing links are not perfect in terms of PDR, NCRAWL+alg2

always outperforms NCRAWL+alg1, since it is able to use feedback information.

6.4 Performance with TCP traffic

Finally, we assess the efficacy of NCRAWL in scenarios with TCP traffic. In [3], experiments with TCP have

demonstrated a loss in efficiency due to packet losses and reordering. First, throughout our experiments
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with the Alice-Relay-Bob topology, where no losses or delays are incurred, the throughput is reduced due

to the additional TCP overheads. We observe that when the 54 Mbps rate is used, the per flow throughput

rate is 7 Mbps for plain 802.11 and 8.5 Mbps for NCRAWL+alg1. A slight loss in NC gain is observed; this

is the result of mixing TCP ACKs with data packets. The same gain is obtained for all the other available

bit rates.

Furthermore, we perform experiments with half-cross topologies, where flows are unidirectional (from

Alice to Chloe and from Bob to Dave), with probabilities of overhearing qAD = qBC = 0.7 and several

channel rates. In this case, NCRAWL+alg1 achieves a slightly lower throughput than IEEE 802.11. This

is due to the fact that some packets are not correctly decoded at the destination and therefore they arrive

delayed and out of order. This causes abrupt reactions from TCP and leads to throughput reduction. When

adding the reordering module of COPE [3], the packets arrive always in order, however this module increases

the delay for each packet. This in turn is interpreted by TCP as congestion; it ends up in TCP window

increments, and thereby decreases performance. NCRAWL is not optimized to cooperate with TCP at this

point and thus, it faces the common problems of TCP in wireless networks. Improving this component is

the main goal of our future work.

7 Conclusions

We design and develop NCRAWL. Our framework. is an extended, generic NC framework that can be

used to quickly develop networking systems in order to evaluate intersession NC and/or scheduling algo-

rithms, entirely based on the implicit (probabilistic) acknowledgement that a packet can get decoded at the

destination. The design of NCRAWL involves all the common processing steps that are always needed to

implement such algorithms; these steps have been abstracted such that designers need to simply focus only

on the implementation of their algorithms. Our measurements demonstrate that NCRAWL is a powerful

NC development system. It offers significant throughput benefits even at high channel rates.
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