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Abstract

We investigate on the sustainability of multihop wireless communications in the context of Information-Centric Networks,
when content is replicated in caches over the network. The problem is cast in a flat wireless network for a given content
popularity distribution and sized by three parameters, (i) the network size N , (ii) the content volume M and (iii) the
cache capacity K per node. The objective is to select a joint replication and delivery scheme that minimizes the link
traffic. Assuming the Zipf distribution about the content popularity, a law well established in the research on Internet
traffic, we compute an order optimal solution, let the three size parameters jointly scale to infinity, and find the scaling

laws about the link rates, ranging from O
(√
N
)

down to o(1). Analyzing the derived laws, we determine the regimes that

the network becomes sustainable subject to the scaling of the three network size parameters and the Zipf rank exponent,
characterize the relative merit of network resources and identify the induced trade-offs about network expansion.
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1. Introduction

Over the last years, the model of Information Centric
Networking (ICN) is receiving increasing attention [1–3].
In this paradigm, user requests are placed on named con-
tent basis via host-to-content primitives, as opposed to the
address of the node that hosts the desired content using
host-to-host primitives. A key motivator for this shift re-
gards the new way content is stored and distributed to
the nodes, which enables the seamless replication of the
content across the network; large populations of geographi-
cally dispersed users can be served at reduced network load
and low latency—a major consideration in view of the pro-
liferation of bandwidth-hungry services, such as HD, 3D
and multiview video, and P2P services. Content Deliv-
ery Networks (CDNs) overlaid in today’s Internet already
implement replication and reap such benefits.

At the same time, networking is marked with a shift
to wireless communications towards supporting user mo-
bility and promoting ubiquitous computing; by 2015, traf-
fic from wireless devices is expected to dominate the total
traffic [4]. Despite their extensive adoption, wireless is still
mostly confined to single-hop cellular-like deployment at
the network edge, a result of the extensive wired telecom-
munication infrastructure existing in many and major parts
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of world and the abundant capacity of optical links. How-
ever, let alone plain theoretical interest, researchers have
always been looking for wireless-only architectures to pro-
vide communication when wired infrastructure is absent,
as in special scenarios (e.g., Adhoc, Vehicular, or Sensor
networks), or for regular Internet access, or even to re-
assess the economics in comparison to the wired backbone
paradigm considering advances such as powerful inexpen-
sive wireless devices, interference combating, cognitive ra-
dios or cooperative transmissions.

In this context, the networking community has been
investigating on the the sustainability of wireless networks
and the emerging scaling laws as they grow in size.In their
seminal work [5], Gupta and Kumar studied the asymp-
totic behavior of planar multihop wireless networks where
each node pairs with some other independently selected
node to communicate, for a total of N pairs equal to
the number of nodes.The per pair data rate decreases as
O(1/

√
N), with the denominator accounting for the number

hops needed per pair on average. Unfortunately, this law
argues against the sustainability of multihop unicast com-
munication motivating, thus, the rethink of wireless net-
working. In this direction, this work considers the asymp-
totic behavior under the novel ICN paradigm.

Clearly, caching at the network level can play a key role
in reducing the required hops by storing the data close to
the clients. The central issue, hence, is the replication, i.e.,
how much dense, and where content is cached. Along this,
routing is a quite important decision. Careless selection



of the delivery paths may lead to large amounts of traffic
traversing the same links multiple times back and forth,
wasting network capacity and causing overloads.

In this thread of research, we set out to compute the
asymptotic laws of the wireless networks under the anycast
transport (when data can be retrieved from potentially
multiple nodes), and investigate on the sustainability of
such networks, in the spirit of [5] and other works. In our
forerunner study [6], we carried out an important part of
this work which regards the modeling and formulation of
the joint problem of replication and delivery. This is a
highly complex, and, therefore, intractable optimization
that deals with the contents of every cache and delivery
paths of every pair of content and network node. Fortu-
nately, it reduces to a simple replication problem whose
optimal solution is of the same order with the original—
Section 2 summarizes briefly these results.

Using the optimal in-order solution of the problem, we
focus on the derivation of the laws and the sustainability
issue. Although a set of asymptotic laws has been already
derived for the two dimensional space of the network size
N and content volume M scaling jointly to infinity (as-
suming the Zipf distribution about content popularity) in
[6, 7], this investigation was incomplete in the sense that
networks scale up in their nodes and the hosted content
volume, but in the node cache size K, too. In plain words,
not only are new nodes added, but the existing ones are
upgraded as storage gets abundant and inexpensive.1

To complete the set of asymptotic laws and give a
comprehensive answer to the sustainability question, this
study2 extends the previous investigation adding the third
scaling dimension of the node caching capacity K. In Sec-
tion 3, we identify all the possible regimes that parameters
K, N and M can jointly scale to infinity, and derive closed
form expressions about the scaling of the link load.

Next, we focus on the main questions, whether caching
leads to better scaling than the unicast, and, in partic-
ular, if it can turn wireless networking sustainable. Sec-
tion 4 provides a comprehensive analysis regarding (i) the
precise characterization of the scaling regimes that turn
the network sustainable, (ii) the evaluation of the relative
merit of network resources in terms of increasing the num-
ber of nodes vs. the individual cache capacity, and (iii)
the identification of the associated trade-offs. An in-depth
presentation of the derived scaling laws is provided in Ap-
pendix Appendix A for further probing.

Last, Section 5 recapitulates this study and discusses
extensions and future research directions, including relax-
ing the symmetry assumptions taken here.

1.1. Related Work
In the area of the asymptotically characterizing wire-

less networking, [5] spurred a series of works often aspiring

1During the last decades, the areal density of hard disks has gone
through periods of doubling per year to doubling every three years.
Similarly, DRAM capacity quadruples every three years [8].

2Part of this work appeared in the WiOpt 2012 conference [9].

to overrule the O(1/
√
N) law, applying various traffic mod-

els/services and topologies, such as multicast, many-to-one
[10], hybrid adhoc with cellular-like infrastructure support
[11]. Departing from the conventional multihop commu-
nications, [12] considered the novel paradigm of coopera-
tive transmissions over long links. However, the O(1/

√
N)

bound was shown to arise from geometry considerations
[13], hence it is not possible to breach. Other efforts exploit
node mobility leading to a novel paradigm where packets
propagate through the physical movement of the carrying
node in addition to wireless transmissions, e.g. [14, 15].

On the other hand, the technique of caching has been
successfully applied in various domains of computing and
networking. In ICNs, the joint optimization of the contents
of all caches in an arbitrary network of asymmetric traffic
is considered ‘daunting’ [16]. In contrast, in planar wireless
networks with symmetric user requests, it is possible to
compute an in-order optimal allocation, as in [6, 17, 18].

In particular, [17] assumes a model of nodes placed
randomly and uniformly, as opposed to the regular grid
of this and prior works [6, 7]. This results to a problem
quite similar to ours, but with some important differences,
which would yield different asymptotics had the authors
derived the associated scaling laws. On the other hand,
[18] considers randomly placed and mobile nodes and in-
vestigates on how fast nodes can move before performance
is affected. Finally, all [6, 7, 18] ignore the cache size scal-
ing and its ramifications to the sustainability issue.

In a different direction than this and the above, [19]
investigates on data delivery using cooperative transmis-
sions [19] in the spirit of [12]; this leads to a hierarchical
tree structure of transmissions over arbitrarily long links,
as opposed to the short links and shortest path delivery
in the multihop communication paradigm. Equally impor-
tant, [19] does not optimize the replication; cache contents
are given, so the optimization is only about the delivery.
Last, an arbitrary traffic matrix is assumed, leading to ca-
pacity regions, which is more general, hence, stronger than
our symmetric approach. However, such results are not as
practical to probe on the issue of network sustainability,
as capacity regions are complex objects in comparison to

simple, closed-form expressions, e.g. the Θ
(√

M/K
)

law.

2. Model, Problem Formulation & Solution

Here and in Section 3.1, we provide a brief overview
of the network model, the optimization problem and its
solution, summarizing the pertinent results of [6].

2.1. Networking Model

Consider a network of N identical nodes arranged in
a square grid lattice. Nodes are indexed by n ∈ N ,
{1, 2, . . . , N}. Each one is connected to the four neighbors
adjacent on the same row or column with non-directed
links. A scaling 2D network emerges by keeping the node
density fixed and increasing the network size N , as in [5].
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Unlike [5] and other studies, the grid is not a random
topology; it has, however, been used in the past [20] for
studying the capacity of wireless networks. In particular,
our model abstracts away the operations at the PHY and
MAC layers, assuming interference-free connectivity to the
four immediate neighbors, circumventing thus the associ-
ated complexity. Nonetheless, it does capture the essential
characteristics of the wireless networks, that is

1. long wireless links are of low capacity; short-range
multihop communications is the way to maximize
capacity [5], which justifies the immediate neighbor-
hood connectivity of the grid;

2. the network diameter scales as
√
N in networks with

uniformly distributed node placement as in [5]; in
contrast, in wireline networks, the diameter scales as
logN , as node connectivity follows power laws [21].

The latter is obvious for the grid, leading directly to the
Θ(1/

√
N) law of [5] for the random pair traffic. In fact,

this kind of traffic essentially arises if, due to limited cache
capacity, data is stored uniquely in the network; our results
match the Θ(1/

√
N) law, validating the suitability of the

grid model. A second as important validation comes from
[18], which, using random uniform node placement verifies
the laws derived in [6, 7] based on the grid topology.

2.2. Content, Requests & Delivery

Nodes (or users therein) place requests to access con-
tent indexed by m ∈ M , {1, 2, . . . ,M}. Each node n
is equipped with a cache/buffer, whose contents are de-
noted by Bn, a subset of M. If node n’s request regards
a file/data m that lies in Bn, then it is served internally.
Due to the limited cache capacity, m will typically not
be available locally, thus, node n will have to retrieve it
from an other node w that keeps m in its cache. Thus for
each (n,m) pair, a route (or set of routes) Rn,m should be
specified from n to retrieve m using unicast delivery.

Let K be the storage capacity of nodes’ caches, mea-
sured in the number of files it can store. This means that
all files have the same size, placing a constraint on the car-
dinality of cache contents |Bn| ≤ K. Variable sizes can be
captured in this framework by splitting each large file into
multiple units, and then treating each one independently.

To be a non-trivial and feasible problem, it should be

K < M ≤ KN. (1)

The first inequality implies that each node has to select the
files of its cache, while the second requires the network to
have sufficient capacity to store all files at least once.

Last, let nodes n ∈ N generate requests for data at
rate λ = 1, common to all nodes. Each request regards
a particular file m ∈ M, depending on the file’s popular-
ity pm. In essence, pm is the probability that a request
is directed to file m. A key point to observe is that the

requests are assumed independent to each other both spa-
tially and temporally, i.e., given any set of past requests at
the network does not affect future requests at any nodes.

In this work, we do not consider the case that the users
have unequal request rates and diverse content popularity
distributions, e.g., according to user classes, or their geo-
graphical location. Our goal is to derive closed form ex-
pressions that provide a practical characterization of the
network sustainability, similar to the O(1/

√
N) law. Asym-

metric formulations fall beyond the scope of this work,
as they will, at best, further parametrize the asymptotic
laws, or produce multi-dimensional capacity regions that
would obfuscate the key issue of sustainability. They are,
however, interesting directions for follow-up work.

Moreover, we assume that [pm] does not vary with time.
This allows us to seek static solutions about buffer alloca-
tion [Bn] and routes [Rn,m]. Indeed, a time-varying solu-
tion would call for a constant in time number of replicas
for each file to be optimal, as dictated by the solution (3);
moving these replicas around the grid cannot offer any
performance advantage. Clearly, the replication is to be
decided based on the popularity: popular files should be
replicated densely to minimize network traffic.

2.3. Zipf Content Popularity

Although the formulation presented next and the solu-
tion (3) applies to any distribution [pm], in Section 3, we
consider the Zipf law, towards deriving scaling expressions
in closed-form. Zipf law is defined as follows:

pm =
1

Hτ (M)
m−τ , (2)

where τ is the parameter of the distribution, adjusting the
rate of popularity decline with m; Hτ (n) ,

∑n
j=1 j

−τ is
the truncated zeta function evaluated at τ (also called the
nth τ -order generalized harmonic number). An important
property of function H for the computation of the asymp-
totic laws that follows is that the limit Hτ , lim

n→∞
Hτ (n) is

the Riemann zeta function, which converges when τ > 1.
Zipf law has been observed to model well, among oth-

ers, the content popularity of the traffic of www and other
types of services in numerous traces in the literature. It
has since been adopted as the dominant model in theoret-
ical studies, e.g., [18, 22–27], in both wired and wireless
networks, and especially pertaining to caching.

Regarding parameter τ , values lower or close to 1 are
reported in most cases; e.g. in web traffic, literature re-
ports 0.986 in [28], 0.64–0.83 in [29], and close to 1 in [30].
Interestingly, [31] discriminates between traffic measured
at proxies reporting a value of about 1 versus 1.4–1.6 for
traffic measured at a ‘busy’ web server. Analyzing traces
from mobile browsing, [32] reports values in the range of
1–1.5. About User Generated Content (UGC) video, [33]
fits popularity with a combination of Zipf and Exponential
Cut-off; regarding the Zipf component, the data suggest
values of τ in the ranges of about 0.98–1.47 and 0.45–1.09
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in two different popular UGC websites. Last, content pop-
ularity in P2P systems was fitted with a τ = 0.95 in [34],
and in a Video on Demand system with 0.70 in [35].

As there is no conclusive answer about the value of τ ,
we consider all possibilities in our investigation.

2.4. General Replication-Delivery Problem

Given any [Bn] replication and delivery routes [Rn,m],
it is easy to express the traffic load C` at any link `. The
problem, then, regards minimizing load C` through suit-
able choice of [Bn] and [Rn,m] given the constraints of (i)
cache capacity and (ii) storage of each file at least once.
This is a joint replication-delivery optimization, which is
detailed in [6] as the minimization on the traffic of the
mostly loaded link, min[Bn],[Rn,m] max` C`. The resulting
value is the minimum link capacity required for the net-
work to be stable without having to reject data requests.
This is the sole performance metric we consider—[18] also
studies the user-perceived delay for constant K.

This joint optimization turns out to be a hard com-
binatorial problem, not amenable to an easy-to-compute
solution. Therefore, we resort to simplifications and ap-
proximations towards suboptimal but efficient solutions.
For our needs, this translates to an order-optimal solu-
tion, i.e., whose value of the objective function is within a
constant to the optimal, hard-to-compute min maxC`.

A first step that preserves the order-optimality of the
solution is the relaxation of the target to the average link
traffic avg` C`; then shortest path routes [Rn,m] are opti-
mal [6]. However, the decisive step involves breaking the
entanglement among the network caches [Bn] as seen next.

2.5. Replication Density-based Problem

Given a [Bn] assignment, consider the frequency of oc-
currence of each file m in the caches, or replication density
dm as the fraction of nodes that store file m in the network:

dm =
1

N

∑
n∈N

1{m∈Bn}.

Based on this metric, we define a simpler problem:

Problem 1. Minimize C ,
∑
m∈M

(
1√
dm
− 1

)
pm, s.t.

1. For any m ∈M, 1/N ≤ dm ≤ 1,

2.
∑
m∈M dm ≤ K.

In the above, we optimize on the densities dm which
express the fraction of caches containing file m. In the

objective, d
− 1

2
m − 1 approximates (in-order) the average

hop count from a random node to a cache containing m.
Weighted by the probability pm of requests on m, the sum-
mation expresses the average link load per request.

Problem 1 is a relaxed version of the original min-max
problem [6]. The solutions of both optimizations produce
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2
3
τ law

(line) of (3b), for the case of content popularity distributed as Zipf.

a capacity of the same order. In particular, [6] presents
an algorithm that assigns cache contents Bn from the den-
sities dm filling the caches in diagonals, and uses shortest
path routes for Rn,m. As both problems share the same
asymptotic laws, it suffices to study the scaling of C.

Note that the optimization of [17] is similar except for
the 1/N ≤ dm ≤ 1 bounds. These constraints turn out to
affect the solution, and predominantly the asymptotics.

As detailed in [6], the density problem admits a unique
solution using the Karush-Kuhn-Tucker (KKT) conditions.
Regarding the constraints on dm about its minimum and
maximum value, either one of them can be an equality,
or none. This partitions M into three subsets, the ‘up-
truncated’ M

�

= {m : dm = 1} containing files stored at
all nodes, the ‘down-truncated’ M� = {m : dm = 1/N}
containing files stored in just one node, and the comple-
mentary ‘non-truncated’ M

�
= M \ (M

�

∪ M � ) of files
with 1/N < dm < 1. Arranging pm in decreasing or-
der, the partitions become M

�

= {1, 2, . . . , l − 1}, M
�

=
{l, l + 1, . . . , r − 1}, and M � = {r, r + 2, . . . ,M}; l and r
are integers with 1 ≤ l ≤ r ≤M + 1.

The solution dm (see Fig. 1) is equal to

dm =



1, m ∈M
�

, (3a)

K − l + 1− M−r+1
N∑

j∈M
�

p
2
3
j

p
2
3
m, m ∈M

�
, (3b)

1/N, m ∈M� . (3c)

3. Asymptotic Laws for Zipf Popularity

Plugging (3) in C, C can be split in three terms

C = C
�
+ C� −

M∑
j=l

pm,

with
∑M
j=l pm = O(1)—please see the definition of the

asymptotic notation in Table 1. Terms C
�

and C � ex-
press the traffic generated from requests on the files of
non-truncated M

�
and downtruncated M � , respectively.

The latter are files uniquely stored across the network,

4



Table 1
Definition of asymptotic notation

(f and g are positive functions)

f = o(g) For any k > 0,

there exists x̂ such that
x ≥ x̂⇒ f(x) ≤ kg(x)

f = O(g) For some k > 0

f
lim

≤ kg For the specified k,

f
lim

< k′g For any 0 < k < k′,

f = ω(g) For any k > 0,

there exists x̂ such that
x ≥ x̂⇒ f(x) ≥ kg(x)

f = Ω(g) For some k > 0

f
lim

≥ kg For the specified k,

f
lim

> k′g For any k > k′

f = Θ(g) If f = O(g) and f = Ω(g)

f ∼ g As x→∞, f(x)
g(x)
→ 1

hence they lie on average Θ
(√
N
)

hops away. Therefore,

a Θ
(√
N
)

law for C is avoided (such law matches [5] as

explained in Section 4), if the cardinality of the downtrun-
cated M� is small. For the Zipf law, C

�
and C� become

C
�
,
∑
m∈M

�

pm√
dm

(2)
=

[
H 2τ

3
(r − 1)−H 2τ

3
(l − 1)

] 3
2√

K − l + 1− M−r+1
N Hτ (M)

, (4)

C� ,
∑

m∈M�

pm√
dm

(2)
=
√
N

Hτ (M)−Hτ (r − 1)

Hτ (M)
. (5)

3.1. Approximations on Hτ (n) & Estimates of l and r

Let us bound the Hτ (n) sum: for n ≥ m ≥ 0,∫ n

m

(x+ 1)−τdx ≤ Hτ (n)−Hτ (m) ≤ 1 +

∫ n

m+1

x−τdx,⇒{
(n+1)1−τ−(m+1)1−τ

1−τ ≤Hτ (n)−Hτ (m)≤ n1−τ−(m+1)1−τ

1−τ +1, if τ 6=1,

ln n+1
m+1 ≤Hτ (n)−Hτ (m)≤ ln n+1

m+2 , if τ=1.

(6)

Next, we derive a system of equations to estimate l and
r, and finally the asymptotics of C

�
and C� .

3.1.1. Estimation of l

If l is a valid file index (i.e. the non-truncated set M
�

and downtruncated M� are not both empty), it is dl < 1
which through (3b) expands to

K−l+1− M−r+1

N
< l

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
. (7)

If, furthermore, l > 1 (i.e., the up-truncated set M

�

is
not empty), then dl−1 = 1. The fact that the solution
of indexes (l, r) is optimal and valid means that if we at-

tempted to decrease index l by 1, the evaluation of (3b)
should yield a density dl−1 greater than 1,

K−l+2−M−r+1

N
≥ (l−1)

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−2)

]
. (8)

This is easy to verify: if (8) had the opposite sign, the new
solution (l−1, r) would be valid and yield a lower value of
C, which contradicts the optimality of the (l, r) solution.

Inequalities (7)-(8) permit computing the integer in-
dex l. However, l can be estimated by treating (7) as an
approximate equality (given that dl−1 = 1 and dl < 1):

K−l+1− M−r+1

N
∼= l

2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
. (9)

Although (9) does not produce necessarily an integer—
there can be a fractional error from the actual integer
value, it suffices for the needs of the asymptotic analysis.

3.1.2. Estimation of r

Likewise, if r 6= 1 (i.e., M
�

and M� are not both

empty), it is dr−1 >
1
N , or equivalently

(K−l+1)N−M+r−1 >(r−1)
2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
.

(10)

If, moreover, r ≤ M (i.e., the down-truncated M� is not

empty), then dr = N−1. Similarly, r cannot be increased
by one, without (3b) producing a density less than 1/N:

(K−l+1)N−M+r ≤ r 2τ
3

[
H 2τ

3
(r)−H 2τ

3
(l−1)

]
. (11)

Treating, hence, (10) as an approximate equality, we get a
non-integer approximation of r

(K−l+1)N−M+r−1 ∼= (r−1)
2τ
3

[
H 2τ

3
(r−1)−H 2τ

3
(l−1)

]
.

(12)

3.1.3. Estimation of l/r

When l and r are not equal to the extremes, i.e., 1 <
l ≤ r < M + 1, it is dl−1/dr = N , or using (3),

l ∼= rN−
3
2τ . (13)

3.2. l and r on Almost Empty M�

The first case of interest is when the solution’s down-
truncated set M� is almost empty. We define M� ≈ ∅ if
|M � | = o(M), i.e., the number of singly replicated files
over their total number is negligible (M� = ∅ is just a
special case). To have M� ≈ ∅, M should increase at a
slow pace with respect to N and K, so that the constraint
dm ≥ N−1 is satisfied for almost all (i.e., M − o(M)) files.
Since |M � | = M−r+1, this is equivalent to M−r = o(M).

Lemma 1 (Almost Empty M� Conditions and indices).
If M� ≈ ∅, then r ∼M , and, moreover,
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• for τ < 3/2, it is

l→ 1, if K
lim

< M1− 2τ
3

l ∼
(
3−2τ
3

) 3
2τ K

3
2τ

M
3
2τ

−1
, if M1− 2τ

3

lim

≤ K = o(M),

l ∼ αK, if K ∼ βα,τM,

M−l ∼
√

3
τ (M−K), if K ∼M,M−K = ω(1),

where α ∈ (0, 1), βα,τ , α
2τ

3−2τ

[
3

3−2τ(1−α)

] 3
3−2τ

and
M� = ∅, if K

lim

≤M
lim

< 3−2τ
3 KN,

M� ≈ ∅, if K
lim

≤M
lim

≤ 3−2τ
3 KN,

M� = ∅, if K = Θ(M);

• for τ = 3/2, it is
l→ 1 if K

lim

≤ lnM,

l ∼ K
lnM if lnM

lim

< K = o(M),

l ∼ αK, if K ∼ γαM,

M−l ∼M
√

2M−KM , if K ∼M,M−K = ω(1),

where α ∈ (0, 1), γα , 1
αe

α−1
α , and

M� = ∅, if K = Θ(M);

M� = ∅, if K = O(M), and M lnM
lim

< KN,

M� ≈ ∅, if K = O(M), and M lnM
lim

≤ KN,

• for τ > 3/2, it is
l ∼ 2τ−3

2τ K, if K = o(M),

l ∼ αK, if K ∼ δα,τM,

M−l ∼M
√

3
τ (M−K), if K ∼M,M−K = ω(1),

with α ∈
(
1− 3

2τ , 1
)
, δα,τ ,α

2τ
3−2τ

[
3−2τ(1−α)

3

] 3
2τ−3

and
M� = ∅, if K = O(M), and M

lim

< 2τ−3
2τ KN

3
2τ ,

M� ≈ ∅, if K = O(M), and M
lim

≤ 2τ−3
2τ KN

3
2τ ,

M� = ∅, if K = Θ(M).

The proof of this and next results is in Appendix B.
In the above, we specify the conditions for both the strict
case ofM� = ∅ and its relaxed variantM� ∼= ∅. Note that
if K ∼M , then l ∼ K ∼M , i.e., almost all files are stored
locally as intuitively expected.

3.3. Non-empty M� Conditions

If M� is non-empty, then M − r = Θ(M). In practice,
this means that M increases fast w.r.t. K and N to avoid
dm dropping below 1/N for a non-negligible number of files.

Lemma 2 (Indices for non Almost-EmptyM� ). If KN −
M = O(1),then l→ 1 and r = Θ(1); in particular,

r ≈ 1 + 3−2τ
2τ (KN −M), if τ < 3/2,

(r − 1) ln(r − 1)≈ KN −M, if τ = 3/2,

r ≈ 1 + 2τ−3
2τ

KN−M
N1− 3

2τ
if τ > 3/2.

Else, if M� 6∼= ∅ and KN −M = ω(1), then

• for τ < 3/2,

– if KN −M
lim

≤ 2τ
3−2τN

3
2τ ,

then l→ 1, r ∼ 3−2τ
2τ (KN −M),

– if KN −M
lim

> 2τ
3−2τN

3
2τ ,

then l ∼ 3−2τ
2τ

KN−M
N

3
2τ

, r ∼ 3−2τ
2τ (KN −M),

• for τ = 3/2,

– if KN −M
lim

≤ N lnN ,
then l→ 1, r ln r ∼ KN −M ,

– if KN −M
lim

> N lnN
then l ∼ KN−M

N lnN , r ∼ KN−M
lnN ,

• for τ > 3/2

– if KN −M
lim

≤ 2τ
2τ−3N ,

then l→ 1, r ∼
(
2τ−3
2τ

) 3
2τ (KN −M)

3
2τ ,

– if KN −M
lim

> 2τ
2τ−3N ,

then l ∼ 2τ−3
2τ

(
K − M

N

)
, r ∼ 2τ−3

2τ
KN−M
N1− 3

2τ
.

Note, that on all the cases, K−l+1 = Θ(K). Observe,
moreover, that the asymptotic laws of r for KN −M =
ω(1) agree with the approximations for KN −M = O(1).

3.4. Capacity Scaling

Now, we are ready to compute the asymptotic behavior
of the rate C in the various regimes of the size of caches
K vs. the number of nodes N vs. the number of files
M . First, we establish the Gupta-Kumar rate O

(√
N
)

as an upper bound [5]. This is intuitive: if replication is
ineffective (e.g., due to large number of files or small size
of caches), then the system essentially reduces to [5].

Lemma 3 (Upper Bound on C). C = O
(√

N
)

.

Next, we proceed to the asymptotic analysis of C using
the results for l and r from Lemmas 1 and 2.

Theorem 4 (Capacity for Almost Empty M� ).
If K ∼M , then

• if τ < 3/2, C = Θ
(√

M−K
M

)
,

• if τ = 3/2, C = Θ
(√

M−K
M

)
,

• if τ > 3/2, C = Θ
(√

M−K
Mτ−1

)
.

If K
lim

< M , and M� ≈ ∅, then

• if τ < 1, C = Θ
(√

M
K

)
,

• if τ = 1, C = Θ
(

1
logM

√
M
K

)
,
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• if 1 < τ < 3/2, C = Θ

(
M

3
2
−τ

√
K

)
,

• if τ = 3/2 and K = Θ(M), C = Θ
(

1√
K

)
,

• if τ = 3/2 and K = o(M), C = Θ
(

log3/2M√
K

)
,

• if τ > 3/2, C = Θ
(

1
Kτ−1

)
.

Theorem 5 (Capacity for Non-Empty M� ). If |M � | =
Ω(M), then

• if τ <1, C = Θ
(√

N
)

,

• if τ = 1 and M
lim

< KN, C = Θ
( √

N
logM

)
,

• if τ=1 and M ∼ KN, C = Θ
(√

N
)

,

• if 1 < τ < 3/2, C = Θ
( √

N
(KN−M)τ−1

)
,

• if τ=3/2, C = Θ

(
log

3
2 r√

K−MN

)
,

• if τ >3/2 and KN−M
lim

≤ 2τ
2τ−3N, C = Θ

(√
N

KN−M

)
,

• if τ >3/2 and KN−M
lim

> 2τ
2τ−3N, C = Θ

((
N

KN−M

)τ−1)
.

4. Scaling Laws, Sustainability & Trade-offs

In this section, we discuss the scaling laws and their
effects in the sustainability of evolving networks. The first
result of our study is the rate C of the most loaded link,
which is computed under the assumption that each node
places requests with rate λ = 1. This sets the lower bound
on the link capacity so that the network can sustain the
offered traffic. Moreover, C also expresses order-wise the
average number of hops required to serve a user request.

The attainable wireless link capacity is subject to Infor-
mation Theory fundamentals and available wireless com-
munication technology. That is, increases in link capacity
are expected to come from the use of additional frequency
bands, and advanced communication techniques, such as
MIMO. These advances, however, can often be costly and
technically challenging to realize. Indeed, in the context
of the random communicating pairs of [5], such advances
in link capacity were ignored; C was assumed constant
as the network size N scales up, therefore the rate λ of
communication per flow declines as 1/

√
N .

Here, likewise, we take the perspective that link rates
cannot increase (especially as fast as

√
N), if we wish to

keep λ constant. Therefore, when studying the scaling
laws of C, central is the question of how to keep it bounded,
i.e. O(1), by appropriately matching parameters K, N and
M so as to ensure the sustainability of the network.

As a first comment, in our study, the law C = Θ
(√
N
)

for λ = 1 arises on low replication capacityKN −M =
Θ(1), i.e., a negligible number of files can be stored in
multiple nodes.In a practical system, this would be recast
as C = Θ(1) for λ = Θ(1/

√
N), which restates [5].

4.1. Asymptotic Laws Systemization and Analysis

Lemmas 1–2 and Theorems 4–5 provide the complete
set of laws regarding the asymptotic behavior of C, l, r and
singly replicated set of files M � in a minimal mathemati-
cally complete form; unfortunately, this is not convenient
to probe into the behavior of the system given the 3D
space of the scaling parameters K, N and M . Appendix
A organizes and analyzes in depth the laws and provides
equivalent expressions and bounds, along with visual aids,
that facilitate the reader understand the findings of the
last Section and interpret the order of the derived laws
through Figure A.

Given the Riemman-Zeta function Hτ phase transition
at τ = 1 and that it appears parametrized on τ and 2τ/3 in
(4)-(5), the solution exhibits two phase transition points
on τ for the values of 1 and 3/2, resulting in distinct scaling
laws, as reflected in the preceding theorems and Figure A.

Next, we focus on the key issue of system sustainability.
To assist this search, we compile a high-level synopsis of
the asymptotic laws of C into Table 2.

4.2. The Role of the Zipf Parameter τ in the Scaling of C

As depicted in Table 2, the system behavior varies
much with τ and the scaling laws take much diverse forms.
Specifically, the higher τ , the lower the order of C be-
comes. This is, for example, evident for the important
case of C = O(1): the conditions are much easier to sat-
isfy for τ > 3/2 than τ < 3/2. Moreover, the higher τ
from 3/2, the more relaxed the condition becomes. On the
other hand, on τ < 1, C = O(1) requires that cache size
K is a fraction (same order) of the content volume M , an
undoubtedly quite strict condition.

This behavior on τ is explained intuitively by the pop-
ularity distribution. The higher τ , the more uneven the
popularity of files is; in other words, for high τ , low in-
dex m popular files become increasingly more popular in
comparison to the unpopular high index m ones.

In fact, it is this asymmetry that makes caching effi-
cient. For τ > 3/2, it is not necessary that the cache size K
is a fraction of the content volume M to keep C = O(1).
The sparsely replicated files, distant to access on average,
are too unpopular to affect C; it is the densely stored files,
accessible at a minimal load that determine the (low) order
of C. In contrast, as τ approaches 0, the distribution flat-
tens toward uniform; then, all files become equally popu-
lar, to be replicated, therefore, with the same density. This
explains why cache size K should be a fraction of content
volume M to keep the required capacity C bounded.

Last, another important point to observe is that C de-
creases with τ . This persists in all cases of Table 2 as well
as all the detailed laws, listed in Figure A of Appendix A.
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Table 2
A synopsis of the scaling laws.

Laws for τ = 1 and τ = 3/2 are similar to the laws of τ < 1 and τ > 3/2, respectively.

τ
‘Low’ Link Capacity ‘High’ Link Capacity

Condition C Condition C

τ < 1 K ∼M or 3−2τ
3
KN

lim

≥M O

(√
M
K

)
3−2τ

3
KN

lim

< M Θ
(√

N
)

1 < τ < 3/2 K ∼M or 3−2τ
3
KN

lim

≥M O

(
M

3
2
−τ

√
K

)
3−2τ

3
KN

lim

< M Θ
( √

N
(KN−M)τ−1

)
τ > 3/2 K ∼M or 2τ−3

2τ
KN

3
2τ

lim

≥M O(1) 2τ−3
2τ

KN
3
2τ

lim

< M Θ
(√

N
KN−M

)

4.3. The Role of Parameters K, N , M in Evolving Net-
works

Let us consider networks that grow in time as regards
K, N and M as part of a network expansion. Although the
expansion over time is not the only possibility of network
evolution, it nevertheless constitutes an intuitive example.

As a first example, we can consider a network centrally
managed that has to cater for its user needs. In an evolv-
ing network, the content volume M is expected to increase
both spontaneously, as the existing users inject more con-
tent in it or demand new content from it, as well as due
to network expansion. The latter involves increasing the
node count N . The users at the new nodes are expected to
bring in their own content, as well as demand new content
from the network to join; both of them result in increas-
ing M . Hence, with respect to the existing users’ content
generation, M is an exogenous parameter; however, taking
into account network expansion, M can have an additional
component, which, as discussed next is controllable.

Regarding the node cache capacity K, it is fair to treat
it as a parameter in control of the network operator. K
should be such to, at least, maintain storage for all data in
the view of M ≤ KN constraint of (1); in reality, it should
be even higher in order to preserve the desired Quality
of Service, a consideration related to sustainability. As
for the left side of (1), K will not be as large as M ; i.e.,
if each node possessed all content, there is no need for
communication among nodes in the setup of static content
studied here (see Section 5 about time-varying content).

As for network size, N is a parameter that can be con-
sidered controllable (e.g., in a cellular setup, the operator
takes decisions on network expansion along with upgrades
in node cache size K). As aforesaid, K and N are linked
against M through the need to provide sufficient storage
to maintain the primary copy of the content.

In a second example of an adhoc network (in contrast
to the previous centralized one), the network is run by a
community of users who spontaneously join and increase
both content volume M and node count N . Moreover,
they control their own nodes’ cache capacity K. Provided
that the nodes are sufficiently uniformly positioned (see

discussion in Section 5 about deviations), the asymptotic
laws of the grid model are applicable.

In both of the above paradigms, the key question re-
volves about the sustainability of the network services.
Under the above perspective about the role of the param-
eters, we explore the possibilities that guarantee sustain-
ability, and identify associated trade-offs. In particular,
we investigate on the actions about the expansion of node
cache size K or the growth of network size N , in response
to the content expansion. As discussed next in detail, K
is the main ‘knob’ to adjust in counterbalancing M ’s ex-
pansion; investing in memory is straightforward and most
likely an inexpensive way to keep the order of C low (ide-
ally bounded) compared to increasing the wireless links’
capacity. Complementary to this, expanding network size
N can be of help and traded off in place of memory K in
some cases, as presented next.

These are applicable both in the centralized paradigm
of the network operator controlling K and N , as well as
in the adhoc paradigm as the rules of cooperation of the
users to preserve the sustainability of the adhoc network.

4.4. Classification of the Scaling Laws

Table 2 summarizes the scaling laws of C for each τ
(cases τ = 1 and τ = 3/2 are omitted for simplicity due
to similarities up to a slow scaling logarithmic factor with
τ < 1 and τ > 3/2, respectively). The laws are grouped in
two regimes that lead to networks requiring high and low
link capacity, respectively. This grouping will facilitate
us to identify interesting trade-offs and draw conclusions
about the sustainability of the system.

4.4.1. ‘High’ Link Capacity Regime

The regime of fast scaling link rate is characterized next
as unsustainable, because the increases of network node
cache K and/or node count N against content volume M
are not sufficient to keep C low. First, note that when
the replication storage capacity beyond the storage of the
primary copy is limited, i.e., KN −M = O(1), C scales
as fast as

√
N , the law of [5]. Observe, moreover, that

for τ > 1,
√
N is scaled down by the capacity KN −M

available for replication beyond the primary copy at some
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power equal to
√
KN −M or (KN −M)

τ−1
for τ > 3/2 or

1 < τ < 3/2, respectively; this is precisely this quantifies
the gain from adding extra capacity in the network beyond
the one required to store a primary copy per file.

On the other hand, for τ < 1, the similarity with the
random communicating pairs of [5] is apparent. In the
special case of K = 1 and KN = M , i.e., no capacity left
for replication, such setup creates a matching of each node
to K uniquely stored files. Thus, there exist N = M/K

random communicating pairs of Θ
(√

N
)

= Θ
(√

M/K
)

hops on average, creating a likewise link rate C.

4.4.2. ‘Low’ Link Capacity Regime

In this regime, the required link rate C increases less
fast with content volume M ; in some cases, it does not
increase at all. Hence, this class can be thought as the one
for which caching can make a difference in the sustainabil-
ity of wireless networks. In particular, depending on the
order of parameters K, N and M , the required link rate
C can be quite low, or—to compare against [5]—increase
at an order lower than

√
N (but it is still open to inter-

pretation whether it is sustainable).
The most interesting regime to explore for perfect sus-

tainability is the one of C = O(1). As the formulas show,
to keep C bounded, the hardest case is on τ < 1: node
cache capacity K should scale as fast as content volume
M . In the intermediate case of 1 < τ < 3/2, node capacity
K has to scale with M , but slower, at a sublinear power.

The case of τ > 3/2 is quite interesting, as C = O(1)
holds true unless content volume M is quite high against
KN

3
2τ , a quantity of lower order than total capacity KN

given that τ > 3/2. It should be thus easier to satisfy
the condition. What is more, expanding network nodes N
helps in keeping link rate bounded, unlike τ < 3/2 where
node cache size K should be expanded for C = O(1). This
relates to the extreme disparity in the content of low vs.
high popularity. From the perspective of an existing node
n, with the addition of more nodes in the network, the
non-popular singly replicated content (i.e., of high index
m) remains singly replicated, and some of it moves to the
new nodes, freeing up cache place in the neighborhood of
n; this space is used to replicate highly popular (low index)
content more densely. Overall, C decreases, which helps
sustainability.

Last, it should be pointed out that τ appears in all ex-
pressions of the conditions (in the multiplicative constant
or in the exponent, too) in a way such that an increase
in its value helps satisfy the condition of the ‘Low’ Link
Capacity Regime.

4.5. Conclusions on Network Sustainability and Trade-offs

Using the above analysis, we now focus on the central
question set forth, that is how to guarantee sustainability
in an evolving network by means of caching. The derived
laws show diverse link rates C diverging as fast as the
network diameter

√
N—the Gupta-Kumar law, or remain

bounded O(1). Although increases in the raw link capacity
may be possible, the cost and effort would likely exceed the
alternative of upgrading the memory/storage of the nodes.
Under this perspective, the network (be it centralized or
community managed) has to control the expansion of pa-
rameters K, N and M relative to each other with the goal
of keeping the link rates C at a low order (much lower than√
N), if not bounded.

The ‘High Link Capacity’ regime correspond to a cache-
deficient system: C scales fast, as content volume M is
close to the total storage capacity KN ; incremental cache
upgrades have negligible effect on the order of C. Only
heavy investment in cache capacity to drive the network
to the ‘Low Link Capacity’ regime would make sense.

The ‘Low Link Capacity’ regime, on the other hand,
correspond to a cache-efficient system.However, different
values of τ result in much different cases: the smaller the
τ , the higher node cache capacity K should increase with
content volume M :

• τ < 1: The network should expand node cache ca-
pacity K proportionally to content volume M to
keep C bounded.

The network expansion on N is irrelevant, except if
the network can tolerate an increasing C (e.g. thanks
to incremental increases in link capacity due to ad-
vances in the Physical/MAC Layers as the network
expands), opting to expand K at a lower rate than
M . In such a case, N would just need to fill-in the
gap between the two, so as to maintain the condition
on the total network storage KN vs. M .

• 1 < τ < 3/2: In this case, both expansion in node
caches and network nodes can help keep C low against
content expansion M . In the scaling rule, the 1/2 ex-
ponent of K is higher than the 3/2 − τ exponent of
M (unlike the τ < 1 case); therefore, K can increase
at a lower rate than M , with N filling in the gap in
view of the condition on the total network storage
KN vs. M , as discussed before. Thus, for this case
of τ , the network operator can take advantage of the
network node expansion and increase node cache size
at a slower rate than content volume M .

• τ > 3/2: it is quite easy to keep C bounded (or even
decreasing as seen in Figure A) with increases in ei-
ther the node cache capacity K or the network size
N . As suggested from the functional form of the con-
ditions on K and N , the network designer has almost
complete freedom to trade cache capacity increases
for nodes. However, it should be stressed that such
a τ has been observed sparingly.

To link with the measurements on τ reported in the lit-
erature, the adverse case with respect to the sustainability
of τ < 1 is the more common in the Internet traffic. Val-
ues greater than 1, and greater than 3/2 in particular, have
been observed in specialized and particular loads such as
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mobile traffic [32], UGC [33], or busy servers [31]. It seems,
therefore, quite unlikely that a real network would fall in
the most favorable case of τ > 3/2, but not impossible for
the intermediate case of 1 < τ < 3/2.

In conclusion, increasing the cache size of the nodes has
a positive effect in network sustainability as intuitively ex-
pected. The same applies to increasing node count, a not
as obvious outcome. Quantitatively, the outcome of the
two is different and heavily dependent on τ and the rela-
tive scaling of the three parameters K, N and M . To en-
sure network sustainability, the operator/community can
exploit the trend of increasing memory in modern devices
and strike the desired balance between M against K and
N w.r.t. the associated laws.

5. Conclusions & Future Work

In this work, we investigated on the effect of caching
in the asymptotic capacity of wireless networks, extending
and completing [6, 7] with the full set of scaling laws and
a thorough study on the issue of sustainability. Specifi-
cally, we conclude that cache expansion is the only means
to keep the network sustainable when the Zipf parameter
is less than 1. For higher values, sustainability is easier
and attainable through a combination of node cache size
K expansion and network node expansion N according to
the respective trade-offs on each τ . For τ > 3/2 in partic-
ular, admittedly a non-common case in measured traffic,
sustainability is quite easily attainable.

The underlying network model assumed a perfect rect-
angular grid topology, identical nodes, and multihop com-
munications. Interesting extensions can, hence, investi-
gate on the effect of deviations from the uniformity in the
derived laws. Intuitively, one could expect that small devi-
ations preserve the laws, whereas large deviations raise the
order towards higher link capacity C. Random topologies
and with node mobility have already been considered in a
similar context in [18], identifying how much mobility is
allowed so that the asymptotic laws of the static case are
preserved. Complementary to these is also the direction
of users with dissimilar content preferences.

On the subject of the practical implications of this
theoretical study, our work makes a step forward on the
problem of sustainability of wireless networks, as first set
by Gupta and Kumar [5], when networks are enhanced
with caching. A similar forward step could research on
wireless communications under the paradigm of other ad-
vanced techniques, e.g. combining caching with coopera-
tive transmissions in the spirit of [12, 19] and quantifying
the gain w.r.t. the scaling laws and network sustainability.

Another interesting extension in this line of research
can consider the effect of time-varying content and time-
varying popularity pm(t). On the static content popu-
larity, it suffices to consider static cache allocation and
delivery routes, and turns negligible the initial network
load overhead to fill-in the caches with content, as this

can be amortized over an arbitrarily long network oper-
ation. However, when content popularity changes with
time, there is a continual load related to updating cache
contents, and a transient allocation in the cache contents.
It is, therefore, quite important to quantify on how fast
popularity can change before new scaling laws about the
total load emerge in comparison to the static case.
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Appendix A. Systemization of the Asymptotic Laws

In this Appendix, we systematize the results of Sec-
tion 3 in a form practical to understand the scaling of the
various quantities and, thus, the system behavior. The
laws about the required link capacity C along with the in-
dices l and r are listed in Figure A in a tabular form. In
particular, for each case of τ , the Figure depicts two tables,
one about C and one about l, r andM� . In each of them,
the various scaling regimes are organized in columns.

A main obstacle to understand the behavior of the sys-
tem and the association between the laws of C vs. the
ones of indices l and r arises from the no one-to-one corre-
spondence between their scaling regimes in the respective
Theorems and Lemmas. To overcome this, we subdivide
them into finer regimes (shown in shaded columns and
marked with gray arrows) where needed (then, matchings
are illustrated with gray arrows between the tables).

To facilitate the understanding of the order of the listed
laws, we make use of strength bar, e.g. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ . Such bars are
shown for each quantity C, indices l, r and the conditions
on K/M and KN/M (the individual node and total network
cache capacity normalized over the content volume); nat-
urally, each strength bar is calibrated to the associated
quantity, i.e., _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ corresponds to the lowest order possi-
ble of C = o(1), l → 1 and r → 1, while _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ corresponds

to C = O
(√

N
)

, l ∼ K and r → M + 1, across all cases

of τ . As many of the laws can span many different orders,
this ‘order range’ is depicted through the use of gray bars:

e.g., as C = Θ
(√

M/K
)

for τ = 1 can be as low as to o(1)

and as high as O
(√

N
)

, this is marked with _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ .

Regarding the scaling of the link rate C in particular,
along with the main law, we present equivalent expressions
and bounds (upper and lower) that permit to switch from
one subset of the three size parameters to another (e.g.
from K and M to K and N for τ < 1). This comes handy
in changing the perspective from the content volume M to,
for example, the number of nodes N and compare against

the Gupta-Kumar Θ
(√

N
)

law. These follow easily from

the main law and the associated scaling regime conditions
are thus given without proof.
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Figure A.1: The scaling laws for C (upper table) and l, r, M� (lower table) for τ<3/2.

Links between the columns of different tables show matchings between the respective regimes. Arrows between columns of the same table indicate subdivisions to finer scaling regimes
(shaded columns). Dashed arrow L99 refers to the entry of the parent regime at the left.Strength bars _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ depict the law order range; black and gray bars indicate the lower and upper
bound of the associated quantity, respectively. E.g., _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ and _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ mark the lowest and highest possible orders across all τ , while _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________________ _ marks a rule that can range from its lowest to
highest order.
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Figure A.2: The scaling laws (cont’d) for τ=3/2 (upper half) and τ>3/2 (lower half).
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Appendix A.1. The Role of τ on System Behavior

The main scaling regimes of the tables of Figure A
listed in columns from left to right regard the cases of (i)
K ∼ M , (ii) K = Θ(M), (iii) M� ∼= ∅ and (iv) M� ∼=
∅. The first two relate the node cache capacity with the
content volume, while the later two pertain to when the
number of singly replicated files is negligible or not. In the
latter two regimes, for all cases of τ , there exist subcases
regarding the law about index l and/or r.

As already discussed in Section 4.2, a lower τ leads to
lower order required link rate C; this is manifested in the
K = Θ(M) cases, which is C = Θ(1) for τ < 1, but o(1)
for τ ≥ 1, and of even diminishing order as τ increases.

On the subject of the singly replicated files, observe
that it becomes increasingly harder to keep non-negligible
the cardinality of setM� as τ increases. This is intuitively
expected; the larger τ implies greater popularity disparity
among files. In turn, this means that increasing τ , the low
index m files of high popularity become even more popu-
lar, while the high index m files’ low popularity decreases
further, hence, the replication density dm of the latter is
furthered pushed down towards a single copy, expanding
set M� . Regarding indices l and r, the former tends to
increase its order (expanding the setM

�

of files replicated
at all node), while the latter tends to decrease its order
in accordance to set M� . However, as already discussed,
despite the cardinality of M� increasing in τ , the order of
C falls, which makes possible to keep link rate bounded,
C = O(1) on τ > 3/2 even when M� 6∼= ∅. Reversely, for

τ < 1, link rate C attains the Gupta-Kumar
√
N law even

if M� is almost empty, provided that it is not completely
empty, i.e. M � ∼= ∅, M� 6= ∅.

Appendix B. Proofs

In the following, the underbracket notation marks the
significant quantities that carry on to the next step, e.g.
x+y signifies that only x carries on (as e.g., y = o(x)).

Proof of Lemma 1. To compute l, we use (9); to find
the conditions for M� ≈ ∅ ⇔ M − r = o(M) ⇔ r ∼ M ,
we use (10) when l = o(K), or (13) when l = Θ(K). If
M � = ∅, then (10) must be true for r = M + 1.
Case τ < 3/2: Using (6) and r ∼M in (9) and (10), it is

K−l+1− M − r + 1

N
∼ l 2τ3 M

3−2τ
3 −(l−1)

3−2τ
3

1− 2τ
3

. (1)

(K−l+1)N−(M−r)−1
lim

≥M 2τ
3
M

3−2τ
3 −(l−1)

3−2τ
3

1− 2τ
3

. (2)

Assuming l ∼ αK, with α ∈ (0, 1), results from (1) to

(1− α)K +1− o(M)

N
∼ (αK)

2τ
3

M
3−2τ

3 −(αK)
3−2τ

3

1− 2τ
3

⇒

M ∼ α−
2τ

3−2τ

(
3− 2τ(1− α)

3

) 3
3−2τ

K,

which proves the third case for l.
Assuming l ∼ K, (1) leads, using M − r = o(M), to

o(K) + 1− o(M)

N
∼ K 2τ

3
M

3−2τ
3 −K 3−2τ

3

1− 2τ
3

⇒

M
3−2τ

3 ∼ K
3−2τ

3 +o
(
K

3−2τ
3

)
− o
(

M

K
2τ
3 N

)
⇒M ∼ K,

where we use M

K
2τ
3 N

= K
3−2τ

3
M
KN

(1)
< K

3−2τ
3 in the last step.

Note that the rule of the third case applies for α = 1.
Examining M� in the two above cases of l = Θ(K) =

Θ(M), and assuming r ≤M (i.e. M� not strictly empty),

we can use (13) to get r = Θ
(
KN

3
2τ

)
, which is ω(M),

provided that N = ω(1). This is a contradiction as r ≤
M + 1. Thus, r = M + 1, and M� = ∅. This completes
the third case of the conditions for almost empty M� .

To complete the fourth cases of l with the estimate of
M− l, we do a Taylor expansion to three terms of function
f(x) = (1− x)β . For x ∼= 0, it is f(x) ∼= 1− βx+ β β−12 x2.
Using the fact that r = M + 1, we apply (1) again:

K − l + 1 ∼ l 2τ3 M
3−2τ

3 − l 3−2τ
3

1− 2τ
3

⇒(
1− 2τ

3

)(
K

M
− l

M
+

1

M

)
∼=
[
l

M

] 2τ
3

− l

M
⇒(

1− 2τ

3

)
K + 1

M
∼=
[
l

M

] 2τ
3

− 2τ

3

l

M
.

Using Taylor’s approximation of f(x) for β = 2τ
3 and

x = M−l
M , it is

[
l
M

] 2τ
3 ∼= 1 − 2τ

3
M−l
M + 2τ

3
2τ−3

6

[
M−l
M

]2
.

Substituting,

1− 2τ

3
− 2τ

3

3− 2τ

6

[
M − l
M

]2
∼=
(

1− 2τ

3

)
K + 1

M
⇒

M − l ∼= M

√
3

τ

M −K − 1

M
,

which is valid when M − K = ω(1). This completes the
first case of l.

Turning our attention to the other two cases of l, i.e.,
when K = o(M), it must be l = o(K) since l = Θ(K) leads
to the above case. Evidently l = o(M) and (1) becomes

K −o(M)

N
∼ l 2τ3 M1− 2τ

3

1− 2τ
3

⇒ l ∼
(

1− 2τ

3

) 3
2τ K

3
2τ

M
3
2τ−1

.

This is correct (second case of l) as long as l
lim

> 1, i.e. if(
1− 2τ

3

) 3
2τ K

3
2τ

lim

≥ M
3
2τ−1. Otherwise, (9) was not appli-

cable, thus l→ 1.
Last, for the last two cases of l = o(K), (2) assures

M� ≈ ∅ when M
lim

≤
(
1− 2τ

3

)
KN ; if the inequality is
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strict, M� = ∅. However, as we assumed l = o(K), we
should add the constraint of K = o(M) or equivalently
M = ω(K). These complete the first two cases of the
conditions on almost empty M� .
Case τ = 3/2: Similarly, (6) and M−r = o(M) in (9)-(10)
lead to

K−l+1− M − r + 1

N
∼ l ln M

l − 1
(3)

(K−l+1)N− (M−r)−1
lim

≥M ln
M

l − 1
(4)

Assuming l ∼ K, (3) becomes

o(K) +1− o
(
M

N

)
∼ K (lnM − lnK)

M
KN<1
⇒

lnM ∼ lnK + o(1)⇒M ∼ K,

Assuming M� 6= ∅ as before, we can use (13) to get r ∼
KN , which is a contradiction, provided that N = ω(1).
Thus, M� = ∅. This completes the first case of M� .

For l ∼ αK, with α ∈ (0, 1), (3) becomes

(1−α)K+1+o(K)−o
(
M

N

)
∼ αK ln

M

αK
⇒M ∼ αKe

1−α
α .

From (1), it is M
KN → 0; this completes the third case of l.

To derive the condition of M� ∼= ∅, we substitute l ∼
K ∼M in (4): it follows that e

α−1
α N

lim

≥ 1, which is a strict
inequality provided N = ω(1); this concludes the second
and third cases of M� .

Returning to the case of l ∼ K, we estimate M − l
by applying the Taylor’s approximation f(1 + x) , lnx ∼=
x− 1

2x
2. Rewriting (3) with r = M + 1,

K − l + 1 ∼= l ln
M

l
∼= l

(
M − l
l
− 1

2

[
M − l
l

]2)
⇒

0 ∼= l2 − 2(2M −K − 1)l +M2 ⇒

l ∼= 2M −K − 1−M

√[
1 +

M −K − 1

M

]2
− 1⇒

l ∼= 2M −K − 1−M
√

2
M −K − 1

M
,

where the last step uses (1+x)2 ∼= 1+2x for x→ 0. Then,

M−l = M

√
2
M−K−1

M
−(M−K−1) ∼M

√
2
M−K−1

M
,

when M −K = ω(1).
For the other two cases of l and M� , it is l = o(K) =

o(M), and given that K = O(M) from (1),

K −l + 1− M − r + 1

N
∼ l (lnM − ln l)⇒l ∼ K

lnM
.

The above (second case for l) is true if lnM
lim

< K = o(M),
otherwise l→ 1 (first case) as (9) is not applicable.

Last, (4) leads to KN
lim

≥M lnM to have M� ≈ ∅.
Case τ > 3/2: (1) and (2) are applicable in this case, too,
and they can be rewritten as

K−l+1− M−r+1

N
∼ l 2τ3

[
1
l−1

] 2τ
3−1−

[
1
M

] 2τ
3−1

2τ
3 − 1

. (5)

(K−l+1)N−(M−r)−1
lim

≥M 2τ
3

[
1
l−1

] 2τ
3−1−

[
1
M

] 2τ
3 −1

2τ
3 −1

. (6)

Assuming l ∼ K, the same derivation as in τ < 3/2
leads to K ∼ M . Repeating, moreover, the derivation for
l ∼ αK as in τ < 3/2, we have to take care to ensure that
3 − 2τ(1 − α) > 0, or equivalently, α > 2τ−3

2τ , which is
the second case of l. Note, that in the previous cases this
constraint was automatically satisfied.

Repeating the analysis onM� as in the two above cases
of l = Θ(K) = Θ(M), and assuming M� is non-empty,

leads from (13) to r ∼ KN
3
2τ , which is ω(M) (provided

that N = ω(1)). This is a contradiction, thus M� = ∅.
This completes the third case of the conditions on M� .

Note that the range of α ∈
(
2τ−3
2τ , 1

]
covers all the

cases of K = Θ(M). Hence, the last case to consider is
K = o(M): then, l = O(K) = o(M), thus (1) leads to

K − l−o(M)

N
∼ l 2τ3

(l − 1)1−
2τ
3 −M1− 2τ

3

2τ
3 − 1

⇒ l ∼ 2τ − 3

2τ
K,

which is the first case of l. Last, with this l, (6) leads to

3

2τ
KN −(M − r)− 1

lim

≥M 2τ
3

(
2τ−3
2τ K

)1− 2τ
3 −M1− 2τ

3

2τ
3 − 1

⇒M
lim

≤ 2τ−3
2τ KN

3
2τ ,

which assures M � ≈ ∅; if the inequality is strict, M� = ∅.
Similarly, the derivation of τ < 3/2 applies for M − l.
Assuming l = o(K) leads through (9) to l = ( 2τ

3 − 1)K
which is a contradiction, thus it is always l = Θ(K).

Proof of Lemma 2. First, assume KN −M = O(1); as
KN −M are the slots available for replication beyond the
primary copy, r = Θ(1), and thus l = Θ(1). If l > 1,

(13) becomes r = Θ(N
3
2τ ) which is a contradiction. Thus

l = 1. Using (12), we compute r.
Next, we proceed to M� 6= ∅ with KN −M = ω(1),

and identify the following cases:

Case τ < 3/2: Assuming that l
lim

> 1, we can invoke (13) to
substitute r in (9), and get with the help of (6)

K−l+1−M−lN
3
2τ +1

N
∼ 3 l

2τ
3

3−2τ

(
l1−

2τ
3 N

3
2τ−1−l1−2τ

3

)
⇒

l ∼ 3− 2τ

2τ

KN −M
N

3
2τ
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Then, invoking back (13), r ∼ 3−2τ
2τ (KN −M). Clearly,

the condition for these to hold true will be l
lim

> 1, or equiv-

alently KN − M
lim

> 2τ
3−2τN

3
2τ . Otherwise, we conclude

l→ 1 and calculate the scaling of r from (12):

KN−M+r−1 ∼ 3

3−2τ
r

2τ
3

(
r1−

2τ
3 −1

)
⇒

r ∼ 3−2τ

2τ
(KN−M).

Case τ = 3/2: Assuming l
lim

> 1, using (6), (9) leads to

K −l + 1− M −lN + 1

N
∼ l ln lN

l
⇒ l ∼ KN −M

N lnN
,

and (13) to r ∼ KN−M
lnN ; for these to be true, it has to be

KN −M
lim

> N lnN . Otherwise, l→ 1, and (12) results in
r ln r ∼ KN −M .
Case τ > 3/2: Assuming l

lim

> 1, using (6) and (13), (9)
becomes

K− l+1− M−lN 3
2τ +1

N
∼ 3 l

2τ
3

2τ−3

(
l1−

2τ
3 −l1−2τ

3 N
3
2τ−1

)
⇒

l ∼ 2τ − 3

2τ

(
K − M

N

)
and thus, r ∼ 2τ−3

2τ
KN−M

N
1− 3

2τ
, provided that KN − M

lim

>

2τ
2τ−3N . Otherwise, l→ 1, and from (12),

KN−M+r−1 ∼ 3
2τ−3

[
r

2τ
3−r

]
⇒ r ∼

[
2τ−3
2τ (KN−M)

] 3
2τ.

Proof of Lemma 3. Since dm ≥ 1
N , we have

C ,
∑
m∈M

[
1√
dm
− 1
]
pm <

∑
m∈M pm

√
N =

√
N.

Proof of Theorem 4 (K
lim

< M). First, we study the case

of K
lim

< M . From Lemma 1, it is K − l + 1 = Θ(K) ex-
cept on the case α = 1 (treated separately at the end) and

r = Θ(M); these yield
√
K − l + 1− M−r+1

N = Θ(
√
K).

Thus, the scaling of C
�

is determined from the ratio

[H2τ/3(M)−H2τ/3(K)]
3
2

Hτ (M) . As for C � , we use that for r = Θ(M),

it is Hτ (M)−Hτ (r− 1) = Θ(M−τ (M − r)) = O
(
M1−τ);

combined with (5) yields C� = o
(√

N M1−τ

Hτ (M)

)
. This is

used on the cases τ < 3/2. Next, we examine each case
separately and show that it is always C� = O(C

�
), which

implies that C
�

alone determines the asymptotic law.
Case τ < 1: We start with the case of l ∼ αK with
α ∈ (0, 1):

C
�

= Θ

(
[H 2τ

3
(M)−H 2τ

3
(l)]

3
2

√
KHτ (M)

)
= Θ

(
[M

3−2τ
3 −l 3−2τ

3 ]
3
2

√
KM1−τ

)

= Θ

√M

K

[
1−

(
l

M

) 3−2τ
3

] 3
2

 = Θ

(√
M

K

)
,

since lim l
M < lim l

K = α < 1.
For the other two cases of Lemma 1 on l, it is l = o(M)

and
[H2τ/3(M)]

3
2

Hτ (M) →
√
M ; using (4), it is C

�
= Θ

(√
M
K

)
.

From Lemma 1, ifM� = ∅, then C� = 0. Else, 3−2τ
3 KN ∼

M and C � = o
(√

N
)

= o
(√

M
K

)
= o
(
C

�

)
.

Case τ = 1. The first case of l ∼ αK is covered from
the above derivation, except Hτ (M) in the denominator,
which changes from M1−τ to logM . Thus,

C
�

= Θ

(
[H 2τ

3
(M)−H 2τ

3
(l)]

3
2

√
KHτ (M)

)
= Θ

( √
M√

K logM

)
.

If l is given by any of the other two cases, l = o(M) and
[H2τ/3(M)]

3
2

Hτ (M) →
√
M

logM . Then, (4) leads to C
�

= Θ(
√
M√

K logM
).

As before, if M� = ∅, C � = 0. Otherwise, 3−2τ
3 KN ∼ M

and C � = o
( √

N
logM

)
= o
( √

M√
K logM

)
= o
(
C

�

)
.

Case 1 < τ < 3/2: Similarly, if l ∼ αK with α ∈ (0, 1), we
use the above derivations to find

C
�

= Θ
(
[H 2τ

3
(M)−H2τ/3(l)]

3
2/
√
KHτ (M)

)
= Θ

(
M

3
2−τ
√
K

)
,

If l is given by any of the other two cases, l = o(M)

and
[H2τ/3(M)]

3/2

Hτ (M) → M
3
2−τ , which from (4), leads to C

�
=

Θ

(
M

3
2
−τ

√
K

)
. Similarly as above, if C � 6= 0 then 3−2τ

3 KN ∼

M and C � = o
(√

NM1−τ
)

= o

(
M

3
2
−τ

√
K

)
= o
(
C

�

)
.

Case τ = 3/2: First, let l ∼ αK with α ∈ (0, 1); then,

[H 2τ
3

(M)−H2τ/3(l)]
3/2

√
KHτ (M)

= Θ

(
[lnM − ln l]

3
2

√
K

)

= Θ

(
[lnM − ln e

α−1
α M ]

3
2

√
K

)
= Θ

(
1− α
α
√
K

)
= Θ

(
1√
K

)
.

On this l, it is K = Θ(M),thus M� = ∅, and C � = 0.
If l is given from the two other cases of Lemma 1, it is

l = o(M), hence,
[H2τ/3(M)]

3
2

Hτ (M) → log
3
2 M . Then, from (4),

C
�

= Θ

(
log

3
2 M√
K

)
. As before, if C� 6= 0, KN ∼ M logM

and C � = o
(√

N√
M

)
= o

(
log

1
2 M√
K

)
= o

(
log

3
2 M√
K

)
= o(C

�
).

Case τ > 3/2: Here, Hτ (M) are all constants, while

H2τ/3(r)−H2τ/3(l) = Θ
(
K

2τ
3

)
, as l = Θ(K) and r ∼M =

ω(K). Substituting to (4) leads to C
�

= Θ
(
1/Kτ−1).

Similarly, if C � > 0, then 2τ−3
2τ KN

3
2τ ∼ M and C � =

o
(√

NM1−τ
)

= o
(

1

K
τ
3 M

2τ
3

−1

)
K=o(M)

= o
(

1
Kτ−1

)
= o(C

�
).
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Proof of Theorem 4 (case of K ∼M). For the case of
K ∼M , it is M� = ∅ (from Lemma 1), thus C � = 0.

Case τ < 3/2: Equation (1) can be rewritten as

K−l+1∼ l

1− 2τ
3

[(
M

l

)1− 2τ
3

−1

]
≈ l
(
M

l
−1

)
= M − l.

where the approximation comes from the Taylor expansion

of function (x + 1)β − 1 ≈ βx for x = M
l − 1 → 0 (as

l ∼ K ∼M), and β = 1− 2τ
3 . Replacing K − l + 1 in C

�
,

C
�

= Θ


(

(M − l)M− 2τ
3

) 3
2

√
K − l + 1 Hτ (M)

 = Θ

(
(M − l) 3

2M−τ√
M − l M1−τ

)

= Θ

(
M − l
M

)
M−l lim∝M

√
M−K
M============ Θ

(√
M −K
M

)
.

Case τ = 3/2: Using Taylor approximation for the loga-
rithm function ln(1 + x) in (3) around x = 0,

K − l + 1 = l ln
M

l − 1
∼= l

(
M

l − 1
− 1

)
∼M − l.

Replacing then K − l + 1 in C
�
,

C
�

= Θ

 (
(M − l)M−1

) 3
2

√
K − l + 1 H3/2(M)

 = Θ

(
(M − l) 3

2M−
3
2

√
M − lM− 1

2

)

= Θ

(
M − l
M

)
M−l lim∝M

√
M−K
M============ Θ

(√
M −K
M

)
From Lemma 1, it isM� = ∅, thus C� = 0. Substituting

thus M − l in C
�
, the result follows.

Case τ > 3/2: The approximation of τ < 3/2 and (1) apply,
leading to K − l + 1 ∼= M − l. Replacing in C

�
,

C
�

= Θ


(

(M − l)M− 2τ
3

) 3
2

√
K − l + 1 Hτ (M)

 = Θ

(
(M − l) 3

2M−τ√
M − l

)

= Θ

(
M − l
Mτ

)
M−l∼M

√
3
τ (M−K)

= Θ

(√
M −K
Mτ−1

)
.

Proof of Theorem 5. When M � 6= ∅, for all τ , it is l =

o(M); indeed, if we assume that l 6→ 1, it is l = rN
3
2τ <

MN
3
2τ = o(M); if we assume that l → 1, it is similarly

l = o(M). Moreover, for all τ , it is M − r = Θ(M), thus√
K − l + 1− M−r+1

N = Θ
(√

K + 1− M
N

)
.

Case τ < 1: As M − r = Θ(M), it is r
lim

< M . Then, from

(6), C � =
√
N Hτ (M)
Hτ (M) = Θ(

√
N). In total, C = Θ(

√
N).

Case τ = 1: Lemma 1 implies that for M� 6= ∅, it should

be M
lim

> 1
3KN . Also, from Lemma 2, it is r ∼ 1

2 (KN−M).

Using l = o(r), it is C
�

= Θ

( √
r√

K−MN logM

)
= Θ

( √
N

logM

)
.

Next we discern two cases for the relation between r
and M that give different laws for C� :

• if M ∼ KN , Lemma 2 yields r = o(M). Thus, C � =

Θ
(√

N Hτ (M)
Hτ (M)

)
= Θ

(√
N
)

. In total, C = Θ(
√
N).

• if M
lim

< KN , then r ∼ βM with 0 < β ≤ 1/3,

and thus, C� = Θ
(√

N
log Mr
logM

)
= Θ

( √
N

logM

)
. In total,

C = Θ
( √

N
logM

)
.

Since it is 1
3KN

lim

< M for M� 6≈ ∅, no other case exists.

Case 1 < τ < 3/2: As before, r ∼ 3−2τ
2τ (KN −M). Then,

C
�

= Θ

(
r

3
2
−τ√

K−MN

)
= Θ

( √
N

(KN−M)τ−1

)
.

Moreover, Lemma 2 implies that r
lim

< M . Thus, C � =

Θ
(√

N [Hτ (M)−Hτ (r)]
)

= Θ
( √

N
rτ−1

)
= Θ

( √
N

(KN−M)τ−1

)
.

In total, C = Θ
( √

N
(KN−M)τ−1

)
.

Case τ = 3/2: As l = o(r), it is C
�

= Θ

(
log

3
2 r√

K−MN

)
. More-

over, C � = Θ
(√

N
[

1√
r
− 1√

M

])
= O

(√
N
r

)
. Now, we

examine the asymptotic law of r from Lemma 2:

• if KN −M
lim

≤ N lnN , then r ln r ∼ KN −M . Then,

C� = O
(√

N
r

)
= O

(√
N log r
KN−M

)
= O

(
log

1
2 r√

K−MN

)
=

o
(
C

�

)
, thus C = Θ

(
log

3
2 r√

K−MN

)
.

• if KN − M
lim

> N lnN then r ∼ KN−M
lnN . In this

case, it is C � = O
(√

N
r

)
= O

(
log

1
2 N√

K−MN

)
. Observe

now that the condition of KN−M
lim

≥ N lnN implies

that r
lim

≥ N , thus C = Θ

(
log

3
2 r√

K−MN

)
.

Case τ > 3/2 and KN −M
lim

≤ 2τ
2τ−3N : It is l → 1,

r ∼
[
2τ−3
2τ (KN−M)

] 3
2τ, thus, C

�
= Θ

( √
N√

KN−M

)
. From

Lemma 1, for M� 6= ∅, it has to be M
lim

> 2τ−3
2τ KN

3
2τ .

Thus, r
lim

≤ (KN)
3
2τ

lim

< M , with the last step coming from

2τ−3
2τ < 1. As before, C� = Θ

(√
N

rτ−1

)
= Θ

( √
N

[KN−M ]
3
2
− 3

2τ

)
τ> 3

2=

o
( √

N√
KN−M

)
. In total, C = Θ

( √
N√

KN−M

)
.

Case τ > 3/2 and KN−M
lim

> 2τ
2τ−3N : It is l = Θ

(
K−M

N

)
and r = Θ

(
[KN−M ]N

3−2τ
2τ

)
. Thus, C

�
= Θ

(
1

lτ−
3
2
√
K−MN

)
=

Θ
(

Nτ−1

[KN−M ]τ−1

)
. Moreover, C� = Θ

(√
N

rτ−1

)
= Θ

(√
NN

2τ−3
2τ

(τ−1)

[KN−M ]τ−1

)
= Θ

(
Nτ−1

[KN−M ]τ−1
1

N
2τ−3
2τ

)
τ> 3

2= o
(
C

�

)
.

In total, C = Θ
(

Nτ−1

[KN−M ]τ−1

)
.
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