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Abstract—We consider a system where packets (jobs) arrive for
processing using one of the policies in a given class. We study the
connection between the minimal evacuation time and the stability
region of the system and show that evacuation time optimal poli-
cies can be used for stabilizing the system (and for characterizing
its stability region) under broad assumptions. Conversely, we show
that while a stabilizing policy can be suboptimal in terms of evac-
uation time, one can always design a randomized version of any
stabilizing policy that achieves an optimal evacuation time in the
asymptotic regime when the number of evacuated packets scales to
infinity.

Index Terms—Evacuation time, stability, throughput.

I. INTRODUCTION

I N THIS paper, we consider a time-slotted system where
packets arrive to different input queues (there may be

other system queues to which packets are placed during their
processing; see Fig. 1). The packets are processed by a policy
from an admissible class. We are interested in the stability re-
gion of such a system. A related problem is the following. For
the same system, a number of packets is placed in the input
queues, no arrivals may occur in the future, and it is required that
the time to process all these packets (evacuation time) is min-
imal. Our purpose is to investigate the relation between system
stability and minimum evacuation time. Under certain general
assumptions on admissible policies and system statistics, we
show that the stability region of the system is completely char-
acterized by the asymptotic growth rate of minimal evacuation
time. We make very few assumptions on the system structure,
and hence the result is applicable to a large number of com-
munication systems as well as more general control systems.
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Fig. 1. Packetized system with packets at the inputs at the
beginning of time; this paper deals with policies that evacuate such systems in
minimum time.

However, we point out that the result, while intuitive, has to
be applied with caution since there are systems for which its
application leads to wrong conclusions. We then look at the re-
verse problem: Given a throughput optimal policy, is this policy
also optimal in evacuating packets? We demonstrate that this
is not usually true, but randomized versions of throughput op-
timal policies exist that achieve evacuation time optimality in
an asymptotic sense.
Concepts akin to evacuation time and their relation to stability

have been investigated in earlier works. Baccelli and Foss [1]
consider a system fed by a marked point process and operating
under a given policy. The concept of dater is used to describe
the time of last activity in the system, if the system is fed only
by the th to th, of the points of the marked process.
Assuming that the dater is a deterministic function of the ar-
rival times and the marks of the point process, and under addi-
tional assumption on dater sample paths, they show that stability
under the specified policy is characterized by the asymptotic be-
havior of daters. These results are extended to continuous-time
input processes by Altman [2]. In our setup, the system evolu-
tion may depend on random factors as well as the characteris-
tics of the arrival process. Moreover, we do not make sample
path assumptions on specific policies. Rather, we specify fea-
tures that admissible policies may have, and based on these, we
characterize the stability region of the class of admissible poli-
cies by the asymptotic growth rate of minimal (over all admis-
sible policies) evacuation times.
A different yet related concept, workload, was introduced by

Harrison [3]; under a specific policy, the workload is de-
fined as the time the server must work to clear all of the in-
ventory of the system at time . This basic concept is used in
the analysis of fluid limits to derive significant results and pro-
vide intuition for good control policies in specific complex net-
works [4]. In this paper, we concentrate on the minimal evacua-
tion time over a whole class of policies and relate its asymptotic
rate of growth to system stability. There is also similarity be-
tween the manner we obtain the asymptotic growth rate of the
minimal evacuation time, and the scaling that is done in order
to obtain fluid limit approximation of a system when it is op-
erated under a specific policy [4]. However, the limits obtained
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by the two approaches concern different quantities. In our case,
we work directly with the original system, and construction of
the fluid limit is not needed. We also consider the stability re-
gion of a system under a class of policies rather than specific
policies, and we do not impose specific requirements on system
structure.
A number of works have recently used evacuation times as a

tool for proving important results in communications networks.
In [5], the stability proof of dynamic index coding policies is
based on minimal evacuation times. Angelakis et al. [6] study
the complexity of evacuation-optimal scheduling policies for
wireless networks. Evacuation times are used in [7] for perfor-
mance analysis of the two-receiver Broadcast Erasure channel
with feedback. In our current work, we formalize the general
system model and prove the key necessity and sufficiency re-
sults in order to facilitate its future use in applications.

II. SYSTEM MODEL AND ADMISSIBLE POLICIES

In the following, we use the vector .
Also, means and

where is the least integer larger than or equal to .With
we denote vectors of nonnegative integers and with vectors
of nonnegative reals.
We consider a time-slotted system where slot

corresponds to the time interval . The system has
input queues of infinite length where packets1 arrive; these
packets may have certain properties, e.g., service times, routing
options, etc. There may be additional queues in the system,
where packets may be placed during its operation; we call
these queues internal. At the beginning of time-slot
packets arrive at input . (In particular, we use to denote
the number of packets in the queue of input when the system
commences operation at .) We assume that the arrival
processes satisfy the ergodicity condition

(1)

as well as

(2)

The operation of the system is characterized by a finite set of
system states , and control sets for each : If at the
beginning of a slot the system state is , one of the avail-
able controls is applied. There may be randomness in
the behavior of the system, that is, given and at the begin-
ning of a slot, the system state and the results at the end of a
slot (e.g., packet erasures) may be random (e.g., due to ambient
noise in wireless networks); the assumptions about the permis-
sible random distributions will be made precise later.
Arriving packets are processed by the system following a

policy , belonging to a class of admissible policies . At time ,
when the system state is , an admissible policy specifies: 1) the
control to be chosen, and 2) an action among a set of

1In this paper, we use the term packet, which describes an arriving unit in
a communication network. However, our work applies to any general service
system with arrival processes and queues, e.g., manufacturing systems, road
networks, network switches, etc. Therefore, the subsequent discussion and re-
sults should be understood generically.

available actions when control is chosen. An action spec-
ifies how packets are handled within the system. The choice
of controls and actions depends on the system history up to ,
denoted by . The history includes all information about
packet arrival instants, packet departure instants, system states,
controls, actions taken, and results, up to and including time .
Remark: In the mathematical analysis of systems, the “state”

of the mathematical model may include part of , and actions
are usually not distinguished from controls. For the purposes
of this work, the terms system states and controls are explicitly
used to refer to the operational characteristics of the system and
are distinct from the actions taken once the system characteris-
tics are set. For example, the sizes of the queues at time are part
of the information captured by , rather than the system state.
Also, we emphasize that the choice of one action or another
within a given control (for example, which particular packet is
transmitted from a given queue) does not affect the system state
or slot outcome. This distinction is needed in order to define well
the statistical assumptions used in the development that follows.
We next present several examples to clarify these notions.
Example 1: Controls Versus Actions. Assume a wireless

transmitter that can transmit to a destination over one of two
channels, I or II (e.g., over two different carriers). Data arriving
at the transmitter are classified in two types A, B. Packets from
each of the classes are placed in distinct infinite-size queues.
The channels can be in one of four states,

. The controls available when
in state determine: 1) whether a channel will be
used for transmission, and 2) the transmission power over the
channel(s) selected for transmission. Suppose at a given slot
we choose , then the rate of transmission on channel I
will be , while channel II cannot be used in this slot.
In this case, the action set consists of two elements,
and , indicating the type of packet to be transmitted over
channel I. If, say, the action specifies that type-A packets are
selected but there are no packets of type A, then a dummy
(non-information-bearing) packet is used. The choice of action
does not make a difference to the dynamics of the system state.

Example 2: Consider a communication system consisting of
two nodes, . Arriving packets are stored in an infinite queue
at node and must be delivered to node . The two nodes are
connected with two links, , at most one of which may be
activated at a time. If link is activated, a packet can be suc-
cessfully transmitted in one slot, but both links cannot be acti-
vated for the next nine slots. If link is activated, a transmitted
packet is erased with probability 0.5 (and received successfully
with probability 0.5) and both links can be activated in the next
slot.
The states for this system can be described by the elements

, where state 0 means that both links can be ac-
tivated and state means that no link can be activated for
the next slots.
The control set for state 0 is , where

means no link activation, means activation of link , and
means activation of link . The control set for the rest of the
states consists only of . From state 0, if control or is
taken, the state returns to 0 in the next slot, while if is taken,
the state becomes 9. From state the system moves to state

in the next slot.
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At state 0, control results in “inactive” channels. If control
is taken, the result is either “unsuccessful” or “successful”

transmission on channel —a random event—and if control
is taken, the result is “successful transmission” on channel .
Here, a “successful” transmission should be taken to mean that a
packet will be successfully delivered to node if transmitted in
the slot (in other words, a “good” underlying transmission link);
it does not preclude the respective control to include a possible
action that does not make a transmission in the slot at all.
The controls under which one of the links is activated are as-

sociated with two actions: 1) the action of transmitting a packet
on the corresponding link, and 2) the action of not transmitting
a packet (“null” action). For the control that does not activate
any link, the associated action set is only the “null” action.
Departures: There are well-defined times when each arriving

packet is considered to depart from the system. For example,
in a store-and-forward communication network where a packet
arrives at node and must be delivered to a single node , it is
natural to consider the departure time as the time at which this
packet is delivered to node . Similarly, if the packet must be
multicast to a subset of the nodes, the departure time of the
packet can be defined as the first time at which all nodes in re-
ceive the packet. However, in some systems, several definitions
of departure timesmaymake sense, and the particular choice de-
pends on the performance measures of interest. As an example,
consider the case where network coding is used to transmit en-
coded packets. In this case, a packet arriving at a single-desti-
nation node may be considered as departed when the destina-
tion node can decode the packet based on the packets already
received by that node. On the other hand, if the decoded packet
is still needed for decoding of other packets, it may be of interest
to define the departure time of as the first time the packet is
not needed for further decoding. At any time between the ar-
rival and departure times of a packet , we say that is “in the
system.”
Features of Admissible Policies: We assume that the class of

admissible policies must possess the following features.
F1) At any time , the history of the system up to is

fully known.
F2) At any time , if the system state is , a policy may

choose any control and action .
No further constraints are imposed on the sequence of
controls and actions that may be chosen by the policy,
namely and .2

F3) If at time there are packets at the input queues, it is
permissible to pick any packets and continue
processing the packets, along with other packets that
may be in the system, without taking into account the
remaining packets.

We emphasize that the above features refer to the class of
admissible policies, rather than any policy in particular. Thus,
any given policy may not necessarily have all of the features; we

2In particular, we emphasize that the set of controls and actions available to
a policy at time may depend on the system state at that time, but may not be
constrained by the history of the system, including the history of packet arrivals
and queue sizes. Therefore, if necessary, the outcomes of actions involving
packets from one or more queues should be meaningfully defined even when
some of the queues involved are empty, e.g., if an action selects a packet from
an empty queue for transmission, “dummy” (non-information-bearing) packet
may be transmitted.

only require that policies that have the above features are not ex-
cluded from the admissible class (e.g., due to the system struc-
ture or operational constraints). Moreover, these features are
generic and easy to verify, they hold naturally in many systems,
and apply to classes of policies as widely as possible while still
maintaining the desired connection between evacuation times
and stability region. However, in certain systems, the above fea-
tures may not be available; in such systems, the results of this
work, however intuitive, may not hold. The following examples
illustrate the importance of the above features and clarify their
definitions.
Example 3: Time-Average Constraints Invalidate F2. To

emphasize the importance of F2, consider a single transmitter
where the transmission power is a control chosen at every
time-slot from a set . The number of packets served
at every slot depends on the chosen transmitted power; for
simplicity, assume exactly packets are served. Consider
the throughput region achieved by the class of policies with a
time-average power consumption below a given bound , i.e.,

, where . Note that the
bound on the time-average power consumption does not impose
a constraint on the power consumed at any particular time, and
thus at any time-slot , a policy may choose any .
However, this class of policies violates F2 since some control
sequences where are not ad-
missible due to the above constraint. Consequently, our results
will not apply to this class of policies.
Example 4: Two-Transmitter Aloha-Type System F3. Con-

sider a system consisting of two transmitters attempting to
transmit arriving packets to a single destination. Each trans-
mitter has its own queue. Activation of both transmitters in
the same slot results in the loss of any transmitted packet.
We can model this system by considering that it has a single
state, and that the control set consists of pairs where

( indicates that transmitter becomes
active (inactive). If both queues are nonempty, then the trans-
mitters are activated with probability

being the same for both transmitters. Hence, the controls
are chosen randomly with probabili-

ties of , respectively. When
one of the queues is empty, any of the controls can be chosen
either randomly or deterministically.
In this example, it is not permissible for a policy to serve

one of the transmitters first; e.g., if , a policy is not
allowed to select (with probability 1) to transmit first the vector
of packets (1, 0) and next the vector (0, 1). Thus, the class of
admissible policies does not satisfy Feature F3, and our results
on the relationship between evacuation time and stability region
do not cover this Aloha-type system.
Evacuation Times: At the beginning of slot 0, let the system

state be , and let there be packets at
input and no arrivals afterwards, i.e.,

. Let be the time it takes until
all of these packets depart from the system under policy . We
call the evacuation time under policy when the system
starts in state with packets at the inputs, and denote its av-
erage value, . It will also be conve-
nient to define , a convention that has the meaning
of advancing one slot whenever the system is empty.
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Let

(3)

and

We call the critical evacuation time function. It will be
seen that under certain statistical assumptions, this function de-
termines the stability region of the considered policies.
Note that according to the definition of , for any

we can always find an admissible policy such that

(4)

This fact will be used repeatedly in the development that
follows.
Statistical Assumptions: Next, we present statistical assump-

tions regarding the system under consideration.
SA1) For all and , it holds .
SA2) Individual packet characteristics (such as packet length,

service time, etc.) are independent and statistically iden-
tical for all packets arriving at a given input and indepen-
dent across inputs.

SA3) If at the beginning of a slot the system state is
and control is taken, the results at time
are independent of the system history before . However,
the system state and the results at time may
depend on both and . Hence, the system states may
be affected by the controls (but not actions) taken by a
policy. Formally, if is the (random) outcome at the
end of a slot, we have for all

SA4) At time , let there be packets in the
system (where is the number of packets still in the
system from those that originally arrived at input ; they
may or may not still be at the input queues). There is a
policy that can process all these packets until they
all depart from the system by time (
may be random), such that

(5)

where is a finite constant (which may depend on
system statistics but not on ).

SA5) Let be the unit -dimensional vector with 1 at the th
coordinate and 0 elsewhere. It holds for all ,
and all and

(6)

Statistical Assumption SA4 is easy to verify in several sys-
tems. For example, in a communication network a policy that
usually satisfies this assumption is the one that picks one of the
packets, transmits it to its destination, then picks another packet
and so on, until all the packets are delivered to their destinations.
Note that assumption SA4 implies SA1; we keep assumption
SA1 separate because, as will be seen shortly, only this assump-
tion is needed to establish the key property (namely, subaddi-
tivity) of .

Statistical Assumption SA5 is needed to justify a technical
condition in the development that follows. This assumptionmay
also be easy to verify for several systems. It says that if the
number of packets at the system inputs at time 0 is increased by
one, then the minimal average evacuation time under any ini-
tial state cannot be decreased by more than a fixed amount. For
example, this assumption is always satisfied if is nonde-
creasing in , i.e.,

(7)

In particular, it can be easily shown that condition (7) holds
if policies have the ability to generate “dummy” packets (i.e.,
packets that bear no information and are used just for policy
implementation), a feature that is available in many communi-
cation networks. Indeed, assume that at time the system
is in state and there are packets at the system inputs. Pick

and a policy such that

Consider the following policy for evacuating packets: Gen-
erate a “dummy” packet for input , place the packets at
the inputs, and use policy to evacuate the system. By con-
struction, (the inequality may be strict if
the departure time of the dummy packet turns out to be strictly
larger that the departure times of the rest of the packets). Hence

Since is arbitrary, (7) follows.

III. PROPERTIES OF

The following property of the critical evacuation time func-
tion will play a key role in the subsequent analysis. We provide
the proofs to our claims in the appendixes.
Lemma 5: The Critical Evacuation Time Function is subad-

ditive, i.e., the following holds for :

(8)

The proof of Lemma 5 is given in Appendix A.
Let and be respectively the set of nonnegative integers

and nonnegative real numbers. We extend the domain of
from to as follows. For , let

(9)

The function is not necessarily subadditive in since,
in general, subadditivity at integer points does not imply sub-
additivity over . For example, the function and

, with , is subadditive
in , while for
and . However, as
we show next, has asymptotically linear rate of growth,
a fundamental property of subadditive functions.
Theorem 6: For any , the limit function

(10)

exists and is finite, positively homogeneous, convex and Lips-
chitz continuous, i.e., for a positive constant it holds
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Moreover, for any converging sequence such that
, it holds

(11)

Here, “positively homogeneous” means that for any ,

(12)

The proof of Theorem 6 is given in Appendix B.

IV. STABILITY—NECESSITY

Let , be the number of packet arrivals at input
that have departed from the system during time-slot under
policy when the system starts in state . Define also

. In the following, we will use the notation

to denote the cumulative number or arrivals and departures re-
spectively up to time . Hence, the number of packet arrivals
at input that are still in the system at time is

(these packets may at time be scattered among
internal system queues as well as the original input queue). We
define the vector and the total system
occupancy

Let be a probability measure over the space of permissible
arrival processes; in other words, captures the statistical as-
sumptions about the arrival processes, such as the distribution of
the arrival sizes, whether or not the arrivals are independent over
time and between queues, etc. Let be a probability measure
over arrival processes that satisfy ergodicity conditions (1) and
(2) with a rate vector .
Definition 7: System Stability. A policy is called stable

for an arrival rate vector , if under any initial system
state , the following holds:

(13)

(where the probability in (13) is taken with respect to the arrival
process statistics and the system state transitions). A sto-
chastic process satisfying (13) is called substable in [8].
The stability region of a policy is the closure of the

set of the arrival rate vectors for which the policy is stable. The
stability region of the system is the closure of the union of

.3 A policy whose stability region is is called
stabilizing.
We show in Theorem 8 below that under (1) and (2), it holds

. Furthermore, in Section V, we
show that under the assumption that the packet arrival vectors

3We emphasize that the stability region of a policy may in general depend on
the permitted statistical assumptions about the arrival processes; for example,
a policy may be unstable for a certain rate vector if general stationary ar-
rival processes are allowed, but become stable if the individual queue arrivals
are required to be independent. The above definition of stability is generic and
captures a number of common definitions of stability in the literature, and the
subsequent discussion in this section is orthogonal to any specific assumptions
imposed on the arrival process, beyond the basic ergodicity condition of (1) and
(2).

are independent and identically distributed (i.i.d.) over time, we
also have , hence

, and we present an explicit policy called Epoch-
based that is stabilizing.
Theorem 8: (Necessity). Let (1) and (2) hold. If , then

The proof is given in Appendix C.
We note that there are classes of policies for which the limit
can be formally defined, but Theorem 8 does not hold in all

its generality since some of the features of admissible policies
in Section II are not satisfied. Consider the following examples.
Example 9: F3 Not Satisfied. Consider the following system.

There are two input queues. If only one of the queues is
nonempty, a single packet from that input is processed in one
time-slot. If both queues are nonempty, then a pair of packets
from both queues must be processed in three time-slots. This
system is a simplified version of the system in Example 4,
and the specified policies do not satisfy Feature F3. It can be
easily seen that , hence
formally

The region is described by

or (14)

Clearly, the vector does not belong in this region.
Consider, however, that single packets arrive in alternating time-
slots to inputs 1 and 2, hence the arrival rate vector is (1/2, 1/2).
Then, simply processing immediately the arriving packets re-
sults in a stable policy.
Notice also that the region in (14) is not convex, while the

region in Theorem 8 is convex since is convex.
The arrival processes in the previous example are not sta-

tionary, hence one may wonder whether imposing slightly
stronger assumptions on the arrival processes would render
the claim of Theorem 8 valid. An example is presented below,
where the arrival processes are i.i.d., but Theorem 8 still does
not hold since admissible policies do not satisfy Feature F3.
Example 10: i.i.d. Arrivals and F3. Let and consider

a system with a single input and the following restriction on the
policies. If the number of packets in the inputs is

then a policy may either decide to idle in a slot or to transmit
packets, , in which case it takes slots to

process all packets. Under this restriction, we have

hence

Applying formally Theorem 8, we deduce that the system is
unstable for any positive arrival rate. Consider, however, that
the arrival process is i.i.d. but bounded, such that at most
packets may arrive at the beginning of each slot (including slot
0, i.e., to be in the system when it commences operation). Then,
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the policy that transmits all the packets immediately is stable,
i.e., under the stated conditions on arrival process statistics, the
system is stable for any arrival rate .
For the systems described in the last two examples, there were

rates outside the region obtained by formally using for
which the systems were stabilizable. The next example shows
an opposite case, namely where the system is unstable for rates
inside the formally obtained region (again, due to not satisfying
Feature F3).
Example 11: System With Priorities and Switchover Times.

Consider a single server with two inputs, where arrivals at input
1 have priority over arrivals at input 2: If there are packets from
input 1 in the system, one of these packets must be served, while
packets from input 2 can be delayed. All packets are served
within one slot, however there is a preparatory time of one slot
to switch the system to serve packets from another input (i.e., an
idle slot occurs whenever a switch from one input to the other
is required).
This system has two states, , where state means that

the server is set to serve packets of input . For this system

if
if

if
if
if

Hence, and the region formally is

Consider, however, an arrival pattern where the system starts
at state , and a single packet arrives at input 1 at every

; hence, . Packets at input 2 arrive
according to an i.i.d. process of rate . It can be easily
seen that in any interval , the number of packets
served from input 2 cannot be larger than 4, hence the departure
rate for packets at input 2 cannot bemore than 0.5 and the system
is unstable, even though .
One may wonder whether if the initial state of the system at

time is fixed, say , then stability is determined
by only. The following final example illustrates that this
is not always the case, i.e., the condition of Theorem 8 applies to
the critical (worst-case) evacuation time function, and not just
the evacuation time function corresponding to .
Example 12: Importance of Maximizing Over States. Con-

sider a system with two servers, where server 1 takes slots to
serve a packet, and server 2 takes slots. The system can
be in one of three states, (0, 0), (1, 0), (0, 1), where 0 denotes an
inactive and 1 denotes an active server. Suppose that there are
no (or null) controls, and that state transitions are random with
the following transition probabilities. For

If the system starts at state (0, 0), it takes on average 1.5 slots to
move to one of the other states, and the transition to either state
occurs with equal probability. Then, since no further change
of states occurs afterwards, it will take either or slots to
evacuate packets. Hence

It can also be easily verified that and
; thus

and , which leads to the stability condition .
Assume now that the system starts in state (an

initial state that may be “natural” in some sense), and formally
use in place of . Then, we would conclude that

, and hence that the system is stable when

This, however, is wrong since for , under state
transition , an event of positive probability, the
input rate will be larger than the output rate.

V. EPOCH-BASED POLICY—SUFFICIENCY

In this section, we consider a specific policy that we hence-
forth refer to as an Epoch-Based policy. The idea of the policy
(which is defined formally below) is to divide the time into
epochs and focus on the efficient evacuation of packets present
in the system at the start of an epoch, while new packets that
arrive during the epoch are excluded from processing. A sim-
ilar idea was used to derive a stabilizing policy in [7] for a
two-user broadcast erasure channel with feedback and in [9] for
the input-queued switch. The main result of this section is that,
for the special case of i.i.d. arrival processes, the epoch-based
policy is stabilizing, provided that the underlying evacuation
policy within each epoch is efficient (i.e., informally, minimizes
the expected evacuation time for the packets present at the start
of the epoch). More precisely, in this section we make the as-
sumption that the arrival process vectors are i.i.d. with re-
spect to time for (for a given time-slot , the com-
ponents of the vector may be dependent; also, the initial
number of packets in the system at , namely , can
be arbitrary and is not required to have the same distribution as
for ). We then show that the epoch-based policy is stabi-
lizing for any such arrival processes if the arrival rate satisfies

.
Consider the set

This set is nonempty since

(15)

hence . We will construct a policy that is stable for any
. The continuity, convexity of and (15) imply that

the closure of is the set and hence

Combined with the necessity result of Section IV, we then con-
clude that

We now present a policy that stabilizes the system for any
, that is

(16)

Definition 13: Epoch-Based Policy : Pick such that
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Fig. 2. (a) An evacuation example where MWM leads to suboptimal evacuation schedule; (b) The external buffer-based randomization technique of stabilizing
policies; (c) Simulation results: a randomized version of MWM (called ) is asymptotically optimal.

and for each and , pick an evacuation policy such that4

(17)

Policy operates recursively in (random) time intervals
, called “epochs,” as follows. Epoch 1

starts at time at state with
packets at the inputs; the evacuation policy is used to
evacuate the packets by time , while any new
packet arrivals during the epoch are kept at the inputs, but
excluded from processing. Let be the state of the system
at time . Epoch starts at time with

packets at the inputs and policy
is used to evacuate the packets by time . Note

that due to F1–F3, policy is admissible.
Let be the length of the
th epoch. Since the arrival process vector is i.i.d, due to

F2 and the Statistical Assumptions of Section II, the process
constitutes a (homogeneous) Markov chain

with stationary transition probabilities. Note that with this
formulation, the initial state of the Markov chain, , is a
random variable whose distribution depends on and .
The main result of this section is the following.
Theorem 14: (Sufficiency). For any such that

(18)

policy stabilizes the system. Hence, the stability region of
is .
The proof of this theorem is given in Appendix D.We conjec-

ture that this result can be extended to hold under more general
arrival process statistics.

VI. FROM STABILIZING POLICIES TO POLICIES WITH
ASYMPTOTICALLY OPTIMAL EVACUATION TIMES

In the preceding sections, we characterized the stability re-
gion of a class of policies through the asymptotic rates of min-
imal evacuation times and constructed a stabilizing policy based
on policies having minimal evacuation times. In this section,
we address the reverse problem: If a stabilizing policy for the
given class of policies is known, is it possible to construct, based

4The definition of the epoch-based policy involves an arbitrary small
since is defined as the infimum of evacuation times by all admissible
policies; consequently a policy that actually achieves may not neces-
sarily exist (or may not be admissible). Of course, if such a policy is admissible,
then it can be used in the subsequent derivations.

on , a minimum-evacuation time policy, at least in an asymp-
totic sense? To address this question, we first need the following
definition.
Definition 15: Asymptotic Optimality. Policy is asymptoti-

cally optimal (with regard to evacuation times) if for any
it holds

Note that the definition implies that

hence the justification of asymptotic optimality. Also note that
since represents the direction of growth, one may restrict at-
tention to the case .
Consider now that is stabilizing. The next example shows

that it is possible that may be neither optimal nor asymp-
totically optimal.
Example 16: Input Queued Switch. Consider the switch

fabric shown in Fig. 2(a) with input set and output set ,
where the numbers on each link denote the number of
packets queued at input for node . Since this system only
has a single state, we drop the state index in the notation. The
policy that, in each slot, activates the matching that maximizes
the sum of queue backlogs (weights) is called maximum weight
matching policy (MWM). It is well known that MWM is
stabilizing for this system [9]. Let where
is the number of packets at input destined to output . Now,
consider the case where we are given the vector of packets
shown in Fig. 2(a) and we want to minimize the evacuation
time for this . From Hall’s theorem [10], it follows that the
minimum evacuation time of is simply

(19)

and in the present example . This optimal evac-
uation time can be achieved by finding a critical matching at
each slot that reduces the maximum row/column sum of ma-
trix by one [11]. Incidentally, a stabilizing policy based on
the minimum evacuation time for the input switch is imple-
mented [9], incurring a delay bound that is logarithmic in the
switch size [12].
Now, check the operation of MWM on the particular evacu-

ation example. The maximum matching at the first slot will be
the one containing the links with a weight
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of . However, note that this matching does not
serve any of the packets destined to node , thus, after the first
slot, we still have , and by (19), we conclude that

. Thus, MWM is not an evacuation
time optimal policy.
Next, assume that the vector of packets to be evacuated is

scaled to . We immediately get . Also, note
that MWM will select the same matching as before (where no
packet reaches ) for at least the first slots before the queue
sizes drop for any other matching to have comparable weight.
Applying the same reasoning, we conclude that after slots the
packets at the input queues require at least another slots,
i.e., . Thus, by the definition above,
MWM is not an asymptotically optimal policy in the evacuation
time sense.
Notwithstanding the above example showing that a stabi-

lizing policy is not in general asymptotically optimal for evacu-
ation times, our main result of this section shows that an asymp-
totically optimal evacuation time can be achieved based on any
given stabilizing policy, using a randomization technique that is
presented next.

A. Randomized Version of Stable Policies

Consider a stabilizing policy , whose stability region is .
In addition to F1–F3 and SA1–SA5, we further assume that it is
permissible to generate dummy packets in the system.
Let there be packets at the inputs of the system where

. We construct a randomized version of , denoted by
, which will be used in Theorem 17. Policy depends on a

(very small) parameter .
1) If , let so that, by positive homo-
geneity of ,

(20)

If , then let . In both cases, .
2) Since policy is stabilizing and , there is an arrival
rate vector with , such that the
system is stable under . Fix and construct independent
sequences of random variables, ,
where for each consists of i.i.d. random variables
with

(21)

3) Consider that the packets are placed in “buffers”
outside the system [see Fig. 2(b) for the example of
the input switch]. Mimic the actions of policy , as-
suming that the packet (virtual) arrival process at time
is . That is, at the beginning of
time-slot , pick packets from the that were
originally in the buffers and consider them as “arrivals”
to the system input queues. The processing of packets
then follows policy . If it happens that at some time

all packets have departed, generate
dummy packets to implement the policy. After time

, if there are still (where for some )
packets in the system, then pick policy of Statistical
Assumption SA4 to empty the system from the packets
in slots, where

(22)

Remark: If for policy it holds for the time to empty the
system from the packets,

(23)

then we can use to empty the system. The MWM policy for
the input switch example has this property.
Theorem 17: Let be a stabilizing policy. Then, for any
, it holds

if

if

The proof is in Appendix E.

B. Simulations

We run a simulation experiment on the switch of Fig. 2(a)
with . In Fig. 2(c), the -axis is and the -axis is

for three different policies: 1) the optimal evacuation
time policy described above; 2) MWM; and 3) the randomized
version of MWM described in Theorem 17. Since MWM satis-
fies (23) in this case, we use MWM at both phases (the phase
where virtual arrivals move packets from the buffer to the switch
queues and the one where all the remaining packets are emp-
tied). In this case

so we generate random variables

Hence, it suffices to generate Bernoulli random variables with
.

From the simulations, it is evident that MWM can be ar-
bitrarily suboptimal in terms of evacuation times (the gap

diverges), but the randomized ver-
sion of MWM (called in the figure) asymptotically
matches the rate of the optimal. Intuitively, the randomization
of the arrivals provide a crucial regularity that is fundamentally
important for the MWM policy to be efficient with respect to
evacuation.

VII. CONCLUSION

This paper studied the connection between evacuation times
and the stable throughput region under a general system model.
Using this connection, if an optimal evacuation time policy is
known, one immediately obtains a stabilizing policy for the
system. Furthermore, if the optimal evacuation time can be com-
puted in a tractable fashion, one obtains a closed-form expres-
sion of the system stability region. An application of this con-
nection in the context of wireless networks with network coding
and opportunistic routing can be found in [13] and [14], re-
spectively. In addition, even in systems where both evacuation
times and the system evolution are intractable, the connection
provides a useful tool for deriving basic structural properties
of the stability region. For example, this tool was used in [15]
to prove the equivalence between the stability region and the
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information-theoretic capacity in a broadcast channel with era-
sures and feedback.

APPENDIX A
PROOF OF SUBADDITIVITY (LEMMA 5)

Proof: Let and let the system be in state at time
0. An admissible policy that evacuates packets is the
following.
a) Pick an admissible policy such that

b) Evacuate the packets following policy . According
to Feature F3, this is permissible. From Statistical Assumption
SA3, we conclude that the average evacuation time in this case
is . Let be the state of the system by time .
Both and are known to (hence to ) due to F1.
Note that is a random variable that depends on .
c) Again, pick an admissible policy such that

d) Evacuate the packets following policy Due to F2
and Statistical Assumptions SA2 and SA3, the average evacua-
tion time (given ) in this case is .
The average evacuation time of is

(24)

where the expectation in (24) is with respect to . Hence

where the last inequality follows by applying expectations with
respect to on and plugging the result into
the expression. Since is arbitrary, the lemma follows.

APPENDIX B
PROOF OF THEOREM 6

An analogy to Theorem 6 has been derived in [16] for subad-
ditive functions defined on . The extension of Critical Evac-
uation Time Function to given in (9) is not necessarily sub-
additive, and hence we need different arguments to show the
result.
Let be a subadditive function. Let be

the set of -dimensional vectors whose coordinates are either
zero or one, and define, . We will need the
following lemma.
Lemma 18: For any it holds

Proof: Assume without loss of generality that for some
and, in case , then

. Write

where , and the th element of is given by

if and
if
if

By subadditivity, we have

Next we extend the definition of to by defining

We then have the following theorem.
Theorem 19: For any , the limit function

(25)

exists, is finite, and positively homogeneous.
Proof: Assume without loss of generality that

. For consistency define . If , then
and (25) is obvious. Assume next that for some

and .
Let and . Using

Lemma 18, we have

Hence, .
To show existence of the limit in (25), it suffices to show that

(26)

where .
By definition of , there are infinitely many , such that

. Since we also have

(27)

we can pick large enough so that the following inequalities
hold.

(28)

(29)

Using Euclidean division, write for

(30)

If , define also

(31)

We then have

(32)

Next, write
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where and the th coordinate of , is defined for
as

if and
if

(33)

Notice that since , it holds .
Using subadditivity, we then have from (32)

Hence

(34)

By (30) and (31), takes a finite number of values, hence
is a bounded sequence, and

Also, from (27), (29), and (30), we have for

hence, using the fact that is a bounded sequence, we conclude

Taking into account the latter inequalities and (28), we have
from (34)

by Lemma 18 and (33)

by (29)

Hence, (26) holds with .
Positive homogeneity follows immediately since for

The next lemma is needed to establish further properties of
in Theorem 21.

Lemma 20: Let a subadditive function satisfy

(35)

Then, for , the following
holds:

for all (36)

(37)

(38)

Proof: By subadditivity

hence

Taking into account (35), we conclude

which shows (36).
To show (37), we use backward induction on the number

of coordinates of that are equal. If , then clearly
(37) holds. Let (37) hold for and assume without loss of
generality that and

. We then have

by the ind. hypothesis

Now, write

and since , we have

i.e., the inductive hypothesis holds for as well.
Finally, for (38), write
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where the last inequality follows from
.
The next theorem provides further useful properties of

under condition (35).
Theorem 21: If a subadditive function satisfies

(35), then the limit function

is subadditive, convex, Lipschitz continuous, i.e., it holds

and for any sequence such that

it holds

(39)

Proof: To show subadditivity, we proceed as follows.
Since for any it holds

for some

we write

Also, by (37)

Hence

Dividing the last inequality by and taking limits shows that
.

Convexity follows easily from positive homogeneity and sub-
additivity

Lipschitz continuity follows easily as well from (38) by re-
placing with dividing by and taking limits.
Finally, let

Using (38), write

Taking limits in the last inequality shows (39).

Theorem 6 will follow directly from Theorems 19 and 21 if
we verify that the critical evacuation time function satisfies (35).
However, this follows easily from (6) since

by (6)

APPENDIX C
PROOF OF NECESSITY (THEOREM 8)

We need the following lemma.
Lemma 22: (System Stability Implies Mean Rate Stability). If

(13), (1), and (2) hold, then

(40)

Proof of Lemma 22: It follows from (1), (2) and the
corollary to [17, Theorem 16.14] that the sequences

are uniformly integrable, hence the sequence
is also uniformly integrable. Since

we conclude that the sequence is also uniformly inte-
grable. We will show in the next paragraph that con-
verges in probability to 0. Equality (40) will then follow from
[17, Theorem 25.12].
Pick any (arbitrarily small) and a large enough

so that according to (13) it holds

Since we can pick large enough so that , we
have

i.e., converges in probability to 0.
Proof of Theorem 8: Pick . Since belongs to the

closure of the rates for which the system is stabilizable, for any
we can find a , for which the system

is stable under some policy . By continuity of it
suffices to show that for any such

(41)

Let the initial system state be . Fix an arbitrary time
index and generate random number of packets
according to the distribution of the arrival processes. Consider
that all packets are in the system at the be-
ginning of time and construct the following evacuation policy .
1) Mimic the actions of policy for up to time-slots, as-

suming that the packet arrival process at time is
. Due to Features F1, F3 this mimicking is permissible.

2) If all packets are transmitted by time , then the evac-
uation time of is at most . Else, after time-slots, there will be

packets in the system. According to Statistical As-
sumption SA4, pick a policy to evacuate the packets
in slots, where using (5)

(42)
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The evacuation time of given is at most
—“at most” because all packets may have

left before time —and hence, taking the conditional average,
we have

by (42)

Next, using the last inequality

Taking expectations with respect to and dividing by , we
have

(43)

Since , by (1), using (11) from Theorem 6,
we then obtain,

Hence

by Fatou's lemma

by (43)

by (40)

APPENDIX D
PROOF OF SUFFICIENCY (THEOREM 14)

In the discussion that follows, we use the terminology and
related results in [18]. For , if leads to , we write

and if communicates with . A Markov chain
with countable state space is called irreducible if all states in
belong to the same essential class, i.e., all states communicate

with each other.
The proof of stability of the Epoch-Based Policy is based on

the following theorem (see [19] and [20]).

Theorem 23: Let be a homogeneous, irreducible,
and aperiodic Markov chain with countable state space . Let

be a nonnegative real function defined on the state space
(Lyapunov function). If there exists a finite set such that

(44)

and for some

(45)

then the Markov Chain is geometrically ergodic (positive recur-

rent) and , where has the steady-state distribu-
tion of .
For the general model under consideration in the current

work, irreducibility and aperiodicity may not hold. Hence, we
need some preparatory work to use Theorem 23. The following
lemma will be useful.
Lemma 24: Let be a homogeneous Markov

Chain, not necessarily irreducible and/or aperiodic.
a)With the notation of Theorem 23, conditions (44) and (45)

imply

for all (46)

where .
b) Conversely, if and there are constants

, and a finite set such that (46) holds
and

for all (47)

then (44) and (45) hold with and .
c) If (46) holds, then for

(48)

Proof: It is clear that (44) and (45) imply (46). Assume
now that (46) and (47) hold. Then, clearly (44) is satisfied for
all . Also, since the following holds for

it follows that (45) is satisfied for with .
To prove (48), use the Markov property and (46) to write

and hence by induction

The next lemma states that when (16) holds, the Markov
process described in SectionV, namely (where

is the duration of the th epoch and is the system state
at the end of the th epoch) has the drift property described in
Lemma 24.
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Lemma 25: For the Markov process , define
. If , then there are and

such that

for all and (47) is also satisfied.
Proof: Using the definition of , and the fact that given

and is independent of , write

(49)

We have by construction of

(50)

Since the arrival process vectors are i.i.d, it holds with proba-
bility 1

and

by (11) (51)

We will show at the end of the proof that the sequence
is uniformly integrable, which will

imply that

by (49) and (50)

by uniform integrability

by (51)

Therefore, for such that , there exists
such that for all pairs with , it holds

hence

where

Also, (47) is satisfied since .
It remains to show that is uni-

formly integrable. Using (5), we have

(52)

Now, we have with probability one

On the other hand, since the length of an epoch is indepen-
dent of the arrivals during this epoch, we have

Since the nonnegative sequences
converge both with probability one and in expecta-

tion, they are uniformly integrable (see [17, Theorem 16.4]).
Using this fact, uniform integrability of follows
from (52).
We next present the main theorem of this section, which

shows the stability of policy .
Theorem 26: For any such that

(53)
policy stabilizes the system.

Proof: The idea of the proof is the following. Assume that
the system starts at time in system state , with
packets at the inputs. We use the queue occupancy notation of

from Section IV, but we henceforth omit the in-
dices and to simplify the notation. Under , it will be shown
through Theorem 23 that (53) implies that we can identify a
state to which the chain returns infin-
itely often. Define to be the sequence of epoch
indices when the Markov chain is in state . Then, due
to the Markov property, the process consisting of the successive
intervals between the times at which the process
returns to state , i.e.,

(54)

consists of i.i.d. random variables and, as will be seen

(55)
Hence, the process

constitutes a (delayed) renewal process.
Observe next that by the operation of the

number of packets in system at times , is statistically the same
as the number of arrivals in a interval of length . Since packet
arrivals are i.i.d. and the operations of the process during the
interval do not depend on these arrivals, con-
sists of i.i.d. random variables with .
This, and the operation of imply that the process ,
is regenerative with respect to . Let be the period
of the distribution of the cycle length . It then follows from
[21, p. 128, Corollary 1.5] and (55) that

(56)
Observe next that the random variables
are decreasing in , and since are finite,

. Using the monotone conver-
gence theorem, we then have

(57)
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From (56) and (57), we conclude that

(58)

Since for it holds

we conclude from (58) that

i.e., policy is stable.
To implement the plan outlined above, we must show the ex-

istence of a state to which the Markov chain returns infinitely
often, as well as (58). For this, we will use Theorem 23, but
because of the generality of the model under consideration, we
cannot a priori claim irreducibility and aperiodicity in order to
apply it directly. Instead, we rely first on Lemma 24 using the
result of Lemma 25.
Let be the communicating class to which a state
belongs. We consider two cases as follows.

a) If is essential, and , we
have and the evolu-
tion of the process with initial condition constitutes
an irreducible Markov chain. If this chain is periodic with
period , then the process is an aperi-
odic Markov chain [18, p. 14]. For this chain, we can apply
Theorem 23 to show positive recurrence, as follows. Since
by Lemma 25 the process satisfies (46), it
also satisfies (48). Hence, the process
satisfies (46), and since , it also satisfies
(47). Therefore, by Lemma 24, we can apply Theorem 23 to

to deduce that it is geometrically ergodic
with

(59)

From the above discussion, we conclude that the initial state
is visited infinitely often, and the successive visit indices

are of the form , where
are integer-valued i.i.d. random variables with

(60)

Let now

(61)

The nonnegative process is regenerative with respect
to , and by the regenerative theorem and (60), it holds

(62)

Observe next that by (54) and (61)

(63)

Hence in order to show (55), it suffices to show

(64)

or, by (62)

(65)

Notice that by (61), we have

by (48)

from which (65) follows.
b) Consider next the case where is inessential, i.e.,

there is at least one state such that for
but ; here, with we de-

note pairs of the form . Hence, there is at least one other
communicating class reachable from . The communi-
cating classes reachable from will be either essen-
tial or inessential. We argue that the process
will enter an essential class in finite time. Assume the contrary,
that is, there is a set of sample paths with ,
for which the process remains always in some inessential class.
Since inessential states are nonrecurrent (see [18, p. 18, The-
orem 4]), the process visits each inessential state only a finite
number of times. This implies that on
and since , we conclude that

Applying next Fatou’s Lemma, we have

which contradicts (48).
Since the process enters again an essential class in finite time,

we can apply the arguments of case a) to complete the proof.

APPENDIX E
PROOF OF THEOREM 17

Proof: Assume first that . Let the initial system
state be . At time , the following packets will be in
the system: 1) the packets at various queues due to
processing according to ; and 2) the packets that
were originally in the input queues but were not processed by
up to time , i.e.,
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The evacuation time of is at most

Taking expectations, we have

(66)

Observe now that by the strong law of large numbers

By uniform integrability of , we conclude from
the last inequality that

Dividing by and taking limits in (66) and using the fact that
by the stability of and Lemma 22 it holds

we then have

Hence

and the theorem follows. Similar arguments for the case
lead to the corresponding bound.
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