Dynamic Wireless Network Coding with
Overhearing and Variable Channel Rates

Constantinos Fragiadakis'*

Georgios S. Paschos?

Leonidas Georgiadis®* Leandros Tassiulas'*

*Informatics & Telematics Institute, CERTH, Greece,
"Dept. of Computer & Communication Eng., University of Thessaly, Greece,
tSchool of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Greece,
$Mathematical and Algorithmic Sciences Lab, France Research Center, Huawei Technologies Co. Ltd.
kofragia@uth.gr, georgios.paschos@ huawei.com, leonid@auth.gr, leandros@uth.gr

Abstract—We study a 1-hop broadcast channel with two
receivers. The receivers have side information obtained by over-
hearing wireless channels. The relay takes control decisions by
coding transmissions based on its knowledge of side information
in the receivers. We consider two control mechanisms. In the
ACK system, the relay has definite knowledge of side information
announced via overhearing reports. In the NACK system, the
relay has statistical knowledge of side information and receives
feedback after every decoding failure.

Our contribution is as follows. We provide the minimal
evacuation times for the two systems and obtain analytical
expressions of the throughput region for the ACK and the code-
constrained region for the NACK system. When the transmission
rates are the same (r; = r2), or when the receiver with the
highest transmission rate has perfect side information (pr = 1),
we show that the two regions are equal. We then provide simple
joint XOR coding and scheduling policies that achieve those
regions, and thus are throughput optimal. Subsequently, we
evaluate the report overhead performance for both mechanisms
and reflect on the involved tradeoff with throughput. Ultimately,
we demonstrate by simulations that the proposed throughput
optimal policies can be appropriately enhanced to have good
delay properties, especially for protocols that utilize sequenced
packet delivery.

Index Terms—wireless network coding, delay analysis, 1-hop
broadcast channel, partial overhearing information, stochastic
control.

I. INTRODUCTION

Wireless interflow network coding mixes information from
different flows and increases the performance of multiple
unicast flows. This approach has been embraced by the re-
search community in works like COPE [1], [2] and many
followup works (e.g. [3]-[6]) but important considerations
prevent this method from finding acceptance in the industry.
One associated problem is how the coding node can be
efficiently informed of the content of the decoding buffers of
the receivers. This is the motivation behind our work, where
we consider two approaches to solve this problem.

The first approach [1] is based on reporting overhearing to
all neighbors via an ACKing mechanism. This scheme suffers
from the large amount of messages that need to be circulated
when the number of receivers and neighbors is high, but this
problem can be partly mitigated by compressing ACK packets
in batches. A concern about this approach is how timely those
reports can be under very high transmission rates.

Fig. 1. The system under consideration; packets from two unicast flows arrive
at the coding node R and are destined to two different receivers. Due to side
overhearing channels, a copy of the arriving packet, destined to one receiver,
also arrives at the other with a probability.

The second approach, also due to [1] (and studied further
in [7], [8]), is based on statistical information and reports
on decoding failures. This reduces the number of reports
required at the expense of throughput performance, since the
coding node makes decisions oblivious to the actual random
overhearing events [9].

Consider the example of Fig. 1. Two non-symmetric unicast
flows are defined, f; : s — 1 and fo : s — 2. Both
flows use the relay node R as a forwarder, which employs
interflow network coding by XORing packets from the two
flows. The receivers 1 and 2 utilize the overhearing erasure
channels to obtain packets destined to the other receiver.
For example, receiver 1 receives packets destined to receiver
2, with probability ps, whenever the source s, sends them
to R. Each receiver ¢ can accept transmissions at a certain
transmission rate r; or lower.

We focus on the downlink part which entails the complexity
of the problem; node R must make coding and scheduling
decisions in order to achieve some objectives, e.2. maximize
throughput. In this context, we will call ACK the system where
node R learns the content of the decoding buffers of 1,2
via explicit reports that follow each overhearing event and
NACK the system where the decisions are made based on the
probabilities of the overhearing channels and feedback reports
following each unsuccessful attempt. Our contributions are
summarized as follows:

1) We give an outer bound for the throughput region of
the ACK system assuming general coding (including

ACK throughput region, arbitrary coding=—

ACK throughput region, XOR coding---

NACK throughput region
XOR coding™

Equality with simple XOR

Equality for equal
rates or perfect
overhearing channel
of fast flow

Achieved with
simple XOR policy

Fig. 2. Summary of our contributions regarding throughput regions and
policies that achieve them. We characterize the throughput region with
arbitrary coding for the ACK system and achieve it with a simple XOR policy.
We characterize the throughput region with XOR coding for the NACK system
and achieve it with a simple XOR policy. We finally show the cases when
both regions are equal.

non-linear coding)-the equivalent information theoretic
capacity region is shown in [10]. We show that this
region can be achieved by simple XOR policies which
operate without knowledge about arrivals.

2) For the NACK system, we give in closed-form the
code-constrained throughput region by constraining the
system to the use of XOR coding. We propose a simple
evacuation coding policy which achieves it. Interestingly,
for the case of equal rates 1 = ro, or when the receiver
with the highest rate has perfect overhearing (i.e. pr = 1,
where f = argmax; r;) this region is identical to the
throughput region of the ACK system. Fig. 2 gives an
illustration of the above results.

3) We prove that the XOR policies proposed to achieve
maximum throughput have the additional property of
evacuating a snapshot of packets in minimum time.

4) We study performance tradeoffs between the two sys-
tems for a range of system parameters comparing the
throughput efficiency and the report overhead.

5) We additionally demonstrate via simulations that appro-
priate enhancements of these policies have good delay
properties. Here, we measure delay as the difference
between the largest packet ID in the system and the
last consecutive packet ID among departed packets. This
measure is especially important for protocols that utilize
sequenced packet delivery, like TCP.

In a nutshell, we provide optimal solutions that utilize
simple XOR operations, require minimal information about
system state, are oblivious to arrivals and can be embraced by
resource limited wireless devices.

II. DISCUSSION OF MODELING ASSUMPTIONS

Our model studies the system with two flows. This is not a
limiting assumption, given that in practical wireless networks,
the vast majority of interflow coding opportunities involve a
small number of nodes, with simple pairwise XOR coding
providing most of the throughput gains [11]-[13] and without
the decoding hassle of coding a large number of packets
(which can be significant, see [14]).

Our model currently assumes a perfect uplink channel, but
it can easily be expanded to include erasures in the uplink. To
do so for the channel of flow 1, we assume a probability of
erasure in the direct channel ¢; and a probability of erasure in
the overhearing channel u;. The system retransmits the uplink

packet after an erasure in the channel. Since the uplink trans-
mission is essentially a Bernoulli trial experiment, it is possible
to replace such a model with a perfect uplink channel and
a modified overhearing probability. It can be found through
probability theory that the probability of overhearing after
correct reception in the relay is given by p; = 11:(11‘;1. The
same analysis is applicable for flow 2. Given this formula for
calculating the equivalent overhearing probability, the erasure
uplink channel can be captured while the subsequent analysis
remains unchanged.

Finding the throughput region for a downlink erasure chan-
nel, even when the probability mass function of an erasure
event is a simple i.i.d Bernoulli trial, is more complicated.
Consider an optimal policy for the channel without erasures
(as the ones we introduce in this work), with the addition
of retransmission in the event of erasure at the channel of
the intended receiver. Although we believe that this policy-
plus-retransmissions is optimal for the policy we introduce in
the ACK system, its usage is not obvious in the case of the
NACK system. For another policy for the ACK system and a
presentation of the complications of this problem, see [15]).
Due to these difficulties, we leave the study of erasures in
the downlink channel for the future and concentrate on the
problem without erasures.

We note, however, that if we assume symmetric erasures,
i.e. if both direct downlink channels are either on or off due
to an erasure, then our model is still valid.

ITII. SYSTEM MODEL

We begin by providing the basic concepts and definitions
common to both ACK and NACK systems. We then describe
the additional details for each specific system.

A. Common Model

System. Consider a 1-hop broadcast network with one
transmitting node R (a coding relay) and two receivers 1, 2.
Time is slotted, where slot ¢ occupies the time interval [¢, t+1).
Packets arrive at R at the beginning of each slot. For every slot,
R makes a control decision that determines the transmissions
of R during the slot.

Packets. Each packet is defined by a positive integer in-
dicating its packet ID and it is additionally classified by its
destination, namely receivers 1 or 2. We also define flow ¢ as
the set of packets destined at receiver i, ¢ € 1, 2.

Arrivals. The packets arrive according to a stochastic arrival
process with rate A\; and Ay correspondingly, see Fig. 1. We
assume i.i.d. packet arrivals within each slot.

Overhearing. Whenever a packet of flow 1 (2) arrives at the
relay R, a copy of it arrives at receiver 2 (1) with a probability
p1 (p2). This probability corresponds to random overhearing
events which are independent from one another. A packet is
called good when it is overheard, otherwise it is called bad.
The relay is aware of p1, (p2).

Storage. R stores arriving packets in the input queues
(hereinafter queues) while the receivers store packets useful
for decoding in the decoding buffers (hereinafter buffers). For
the latter, the stored packets are either overheard, or previously
received coded packets which haven’t left the system yet.
An example is given in Fig. 1. The number of queues and
their properties are determined by the specific system under

consideration (ACK or NACK).

Rates. Receiver i is associated with a transmission rate r;,
1 € 1,2 which is the maximum number of packets transmitted
by R such that 7 will correctly receive all transmissions. Recep-
tion corresponds to PHY layer operations, e.g. demodulation.

XOR Coding and Decoding. The relay R can perform XOR
coding, i.e. bitwise modulo-2 additions of two packets x1, x2
denoted by x; @ x2. The decoding is straight-forward if both
the XORed packet and one of the native packets involved in
the combination are known to the receiver; e.g, applying a
XOR addition on x5 and x @ 2 provides xj.

Controls. For every slot ¢, R chooses a control ¢(t) which
corresponds to a packet encoding and a transmission rate is
determined. If the encoding is directed to receiver ¢ only
(singleton control), then exactly r; packets are transmitted at ¢.
If the encoding is directed to both receivers (pair control), then
min{ry, ro} packets are transmitted so that both receivers can
decode the message. Whenever there are not enough packets
to send with the chosen rate, dummy non-informative packets
are used to fill in this number. Control specifics are further
determined by the ACK and NACK systems.

Departures. We assume whenever a packet is obtained
in native form (i.e uuencoded) by the intended receiver, the
packet and all coded functions of it depart the system. The
packet can be obtained either by the direct transmission of
the packet from R using a singleton control, or after a XOR
decoding.

Finally, we assume the uplink and downlink broadcast
channel is erasure-free and we discuss this assumption in
section II.

B. ACK System

In the context of the ACK system, whenever there is an
overhearing event, an acknowledgment (ACK) is transmitted
to R. Therefore, R is aware of whether a packet is good/bad.
Notice that knowing the probabilities of overhearing p; and
p2 is redundant in this system. See Figure 3 for an example.

Queues. We use four queues to classify packets upon
arrival, named QY,Q%, Q3,Q5, based on whether they are
good/bad (g/b) and their flow (1/2).

State. The state of the system at time slot ¢ is Sge(t) =
(k1,ka,n1,n2), where ki (k2) is the number of packets of
flow 1 (2) in all queues, and n; (n2) is the number of packets
in Q7 (Q9) that reside in the queues of the relay. Choosing this
particular state representation is important for our analysis.

Controls. The control set is defined as

Caet = {91, b1, g2, b2, 91 © g2}

where, for example, control g; denotes the transmission of
r1 packets from queue Q7. The control {g; @ go} is directed
to both receivers (sent at rate min{ry,r2}) and the controls
{gi,b;} are directed to receiver i (sent at rate r;), i = 1,2.
Note, that we omit controls that apply XORs on bad packets.
Although this is a constrained control set, it can be shown [8]
that optimal performance can be achieved using this set.

Policies. A policy is a rule that maps the system state at the
beginning of slot ¢ to a control ¢(t) € Cye-.

C. NACK System

In the context of the NACK system, the controller does not
have definite knowledge about whether a packet is bad or good
and hence it uses the knowledge of probabilities p;, p2 to make
decisions. Additionally, we assume a feedback mechanism
which corresponds to transmissions of NACK packets from
the receivers to R whenever a receiver fails to decode a given
transmission. We assume that at the end of each slot, all
feedback corresponding to the transmissions of the slot will
be gathered. Feedback is then used to determine whether a
packet is good or bad.

Decoding Failure and NACK Feedback. Singleton packets
are always decoded by the receivers. Therefore, a decoding
failure always corresponds to a XOR transmission. Suppose
that receiver 1 cannot decode a XOR packet, and sends a
NACK message. R can then infer that receiver 1 did not
decode, and moreover it has not previously overheard the
packet destined to receiver 2, i.e. the pairing packet is a bad
packet. Due to the feedback rules described, if one NACK is
received, a bad packet leaves the system and a good packet of
the flow whose receiver sent the NACK stays in the system.
If two NACK messages are received following a transmission,
then both packets stay in the system and characterized as bad.

Queues. We use six queues to classify packets. Upon arrival,
the packets of flow i are pushed in a queue named ()} also
called unknown queues since the good/bad state of the packets
in those queues is not known. When the state of a packet
becomes known through feedback, it is popped from)} and
pushed to queues Qf , or Qli’, whose semantics are the same
as in the ACK system. See Fig. 3 for an example.

State. The system state is Syo(t) = (k1,ke,n1,n2,
mi,msg), where k; is the total number of packets of flow 4
in the queues, n; the number of packets in Q? and m; the
number of packets in Q°.

Controls. The control set is defined as

Cto = CdetU{ulvu%gl @ ug,u1 © go,u1 D us}

The set is again constrained to exclude XOR controls involving
packets that are known to be bad. This happens without loss of
optimality, a proof is omitted for brevity. Controls {g;, u;} are
directed to receiver i (as before), while the rest of the controls
are directed to both receivers. It is important to notice that,
given their initial classification as unknown packets, the only
way for packets to be enqueued in the Q% queues is after a u; @
ug transmission were both unknown packets are bad, in which
case both packets are moved to their corresponding queues

b i € 1,2. Also notice that a future transmission b; (or by)
with rate min(ry,ry) will make both bad packets depart, due
to the fact that we store the previous XOR combination at the
buffers of the receivers. Beside the above special transmission,
all other controls manage to cause the departure of the bad
packets they code.

Policies. A policy is a rule that maps a system state at the
beginning of slot ¢ to a control c(t) € Cyo.

IV. STABILITY CONSIDERATIONS

Consider the set of queues at the coding node, denoted Q).

Denote the sum of backlogs of queues in) under policy o at

& 54
Q!

A: ::Qli
1

R

Qe {0
Ao > 82JQ;
Ellos 0 I (o

g | g

Fig. 3. (left)The example of Fig 1 under the ACK system. (right) The same
example under the NACK system and after the control ui @ wug is used
with » = 2. Packets are classified as good (overheard), bad (not overheard)
or unknown (no knowledge of overhearing event and only in the NACK
system). For the NACK system, all packets are initially classified as unknown
and some of the gradually move to good or bad queues, according to the
received NACKSs.

the end of time slot ¢ as X7 (¢). As in [16], we say that the
system is stable if:

lim limsup Pr (X7 (¢t) > q) = 0.

4= t—oo
Note that the definition of stability does not include the buffers.
Due to the definition of departures, though, stability of queues
implies stability for the buffers.

Consider the set of all vectors A = (A1, A2) for which
the system is stable under policy o; the closure of this set
denoted by A7 is called the stability region of the policy o.
The region A £ U, A characterizes the system and is called
the throughput region. In case we constrain the allowable set
of codes (e.g. to XOR only) we will refer to the corresponding
region as the code-constrained throughput region, see [17].

We expect the code-constrained region of the NACK system
to be a subset of the throughput region of the ACK (see Figure
2) due to the partial overhearing information available at the
relay and the restriction to XORing.

V. EVACUATION TIME AND STABILITY

In order to study the throughput regions and gain insight into
the form of the policies that can achieve throughput optimality,
we consider a special operation of the system, which is based
on evacuating system instances. We plan to use prior work [16]
which connects the evacuation times of such instances to the
system throughput region. In particular, we will derive analytic
expressions for the regions of interest by means of calculating
the evacuation time of an arbitrary instance in each system.

For the ACK case, we define as a system instance a
realization of the random tuple (K3, Ko, My, Ms), where K;
is the total number of packets at the input destined to receiver
¢ and M; is a binomial RV with parameters (K, p;) indicating
how many packets out of K; are good. For the NACK case,
we define a system instance as a realization of the random
tuple S = (K1, K2,0,0,0,0) where K;,i € {1,2} is the total
number of packets at the input destined to receiver ¢ . For
both systems, the packets of the instance enter the system at
t = 1 and no further arrivals are introduced for ¢ > 1. Both
the ACK and NACK instances correspond to an equivalent
“initial condition” where the packets are at the input queues
with knowledge about the overhearing that corresponds to the
capabilities of each system [16]. Figure 4 shows an example.

An admissible evacuation policy 7 is any rule for deriving a
finite sequence of eligible control actions at the end of which
all packets of any possible instance have departed from the

__5)2]c"

—
e —

1
54321

—Ror Zé O
| N

_Bfle: B "

Fig. 4. System instances of the ACK and NACK cases under the same initial
arrivals. (left) An instance of the ACK system. The good/bad state of all
packets that arrived is known. (right) An instance of the NACK system. The
good/bad state of the initial arrivals is not known, therefore all packets are
enqueued to @} queues.

system. An example of a sequence of eligible control actions
that evacuate the ACK instance of Figure 4 with r; = ry =1,
could be {g1 DB g2, b1, b1, b2, ba, g1, g1} corresponding to packet
transmissions {x1 @ ys, T2, T5, Y1, Y2, T3, T4}, Where x; is a
packet of flow 1 and y; a packet of flow 2. This sequence
uses 7 slots, which turns out to be the minimum evacuation
time in this example, in the sense that any other sequence
of controls cannot evacuate this instance in less than 7 slots.
Correspondingly, for the NACK system, an example could be
{u1 © uz, 91 ® uz, g1 © uz,u1,u1,u1,u1,g1} corresponding
to packets {x1 ® y1, 21 B Y2, 21 D Y3, T2, T3, T4, T5, 21} and
8 slots. An example of an evacuation policy could be the
rule: ”send all packets singleton” or “apply coding whenever
there are two packets that belong to different flows, otherwise
send the packets singleton”. The former is admissible, since
any instance will eventually be evacuated. The latter is not
admissible since a possible instance is that which contains
two packets from different flows that are both bad. The latter
policy will never evacuate those packets since it will always
XOR code them and the receivers will fail to decode the
combination.

A. Infimum of Average Evacuation Time

We will now present a formal definition for the infimum
of average evacuation time. Consider the ACK system. Let
(k1,k2, N1,N2) be a system instance and 7 € II be an
admissible evacuation policy where II is the set of all admis-
sible evacuation policies. We denote with 7™ (k1, ko, N1, N2)
the evacuation time of policy m, which is the number of
slots required to evacuate the instance under policy 7. 1™
is random because a policy could randomly choose control
sequences in general. Therefore, we define T (ki,ky) 2
E[T™ (K1, Ko, My, M3)| Ky = ki, Ko = k2] to be the average
evacuation time of an admissible policy 7 over all possible
instances for a system with ki, ko packets at the inputs and
over all possible control sequences generated by 7. Finally,
we define T (k1, k2) £ infren{T (k1,k2)} the infimum of
average evacuation time over all admissible policies for a
system with k1, ko packets at the inputs.

Now consider the NACK system. Let (kq,k2,0,0,0,0)
be a system instance and w €& 1II be an admissible
evacuation policy where II is the set of all admissible
evacuation policies. We denote with T7(kq,k9,0,0,0,0)
the evacuation time of policy 7 and T (ki,ko) =
E[T™ (K, K2,0,0,0,0)| Ky = k1, Ky = ko] the average evac-

uation time of 7 as before. The infimum is defined as above.
The use of infimum is necessary to allow the optimal evacua-
tion time to be achieved in the limit by a sequence of policies,
and hence to avoid constraining the consideration to sets of
policies with minimum evacuation times.

B. Epoch-Based Policies

Let m € II be an admissible evacuation policy for a system
instance where II is the set of all admissible evacuation
policies. We will describe a way to use 7 to form a policy o ()
admissible in the system with arrivals. We call such policies
epoch-based.

The initial system instance is defined as the system instance
created by the arrivals in the system at ¢ = 0; denote the
instance that occurs after arrivals as I°. The first epoch or
epoch 0 is defined as the time needed to evacuate the initial
system instance under policy 7, which is 77 (I°). If no arrivals
have occurred, then 77(0) = 1 by convention. All further
arrivals during the evacuation are blocked from entering the
system and temporarily stored; denote this set of packets as
I'. The epoch j is recurrently defined as the time needed to
evacuate the system instance that is created by the packets that
arrived during epoch j — 1, i.e T™(I771).

An epoch — based policy for the system described in III,
denoted as o(w) is defined as a policy that evacuates the
system in epochs, as described previously, using policy 7 [16].
C. Throughput Region and Optimal Policies

Finally, we present the theorems of [16] that form the basis
of our analysis, namely characterizing the efficiency of the
studied systems, and proving that optimal evacuation policies
can be used to define optimal epoch-based policies for our
model.

LEMMA 1 [SUBADDITIVITY AND LINEAR GROWTH]: The
function T*(k’l,kg) is subadditive, is upper bounded by a
linear function and the following limit exists
=%
T()\17>\2) = lim T ([t)‘{l) [t)‘2~|))
t—o0 t

Proof: In [16], Lemma 1 is shown under a general class
of policies, provided that these policies have certain features
and under some assumptions on system operation. Most of
them hold trivially in our system. Assumption 5) in [16]
can be verified by considering a simple policy that evacuates
all packets in the system in a random order using native
transmissions. This policy evacuates the system in exactly
H—i—‘ + H—i—‘ < % + % + 2 slots, thus 5) is satisfied. The
same policy can be used to show 6).]

The following are consequence of lemma 1:

PROPOSITION 2 [THROUGHPUT REGION VIA EVACUATION
TIMES FROM [16]]: The throughput region is the set of rates
A1, Ag > 0 satisfying T'(A, A2) < 1.

PROPOSITION 3 [THROUGHPUT OPTIMAL POLICIES VIA
EVACUATION POLICIES FROM [16]]: Suppose that for an
evacuation policy ™ we have

limsup L[] T2a])

t—o0 t

=T\, A), Y AL e (D)

then, the epoch-based policy o () is throughput optimal.

In the next two sections we use propositions 2 and 3 to
characterize the performance of the ACK and NACK systems.
Moreover they motivate us to derive epoch-based policies
which achieve maximum performance.

VI. ANALYSIS OF THE ACK SYSTEM

Consider the class Il of evacuation policies described in

Algorithm 1

Algorithm 1 Class II4 of optimal evacuation policies set for
the ACK system
Input: An instance of an ACK system
Output: Control sequence {c(1),¢(2), ...} that evacuates the
system.
t=1
while Cye(t) = 0 do
if {91 D gg} € Cyer(t) then c(t) = g1 @ g2
else ¢(t) = any singleton control
(Each policy in the class defines a different order of
singleton controls.)
t=t+1

In Appendix A we consider the ACK system and a broad
class of policies that can perform arbitrary coding. We then
show that the policies in the restricted class Il satisfies (1),
where:

T(Ar, Ag) = 2L 4 22
1 T2

min{pi A1, p1 A2}
max{ry,re}

s VAL A

and therefore combining with proposition 3 we have:

THEOREM 4 [THROUGHPUT REGION]: Consider an ACK
system with overhearing probabilities p1, ps, transmission
rates 11, To and the ability to perform arbitrary coding
operations. The system’s throughput region is the area defined
by A1, A2 > 0 satisfying:

N

min{pi A1, p1 A2}

max{ry,rs} =1 @

1 T2
Here, we have relaxed the demand that admissible policies
only use pair or singleton encoding. By “arbitrary” we mean
policies with transmissions that can be of any encoding, linear
or non-linear. Therefore, this result provides the achievable
throughput for a very general class of systems which assume
that the overhearing events are known to the controller via
reports.
Moreover, using proposition 3 we conclude that any epoch-
based policy o (), 7 € Ilge is throughput optimal.
VII. ANALYSIS OF THE NACK SYSTEM
In this section, we study a set of evacuation policies II for
the NACK system, constrained to the use of XORs (i.e. general
coding is not considered). Let (f,;s) = (1,2) if 1 > 7 and
(f,s) = (2,1) otherwise, where f=fast and s=slow. Consider
the class of evacuation policies described in Algorithm 2
In Appendix B we prove that these policies satisfy (1) of
proposition 2, where:

Algorithm 2 Class Il, of optimal evacuation policies for the
NACK system
Input: An instance of a NACK system
Output: Control sequence {c(1),¢(2), ...} that evacuates the
system.
ifl—pr > :—} then Choose only singleton controls that
evacuate the system in any order and exit.
t=1
while Cy,(t) = () do
if g1 @ g2 € Cyo(t) then c(t) = g1 D g2
else if u; @ go € Cyo(t) then c(t) = uy P go
else if us @ g1 € Cyo(t) then c¢(t) = g1 D ug
else if 11 @ us € Cyo(t) then c(t) = ug ® ug
else ¢(t) = any singleton control
(Each policy in the class defines a different order of
singleton controls. During this step, controls b; and b,
are used in the way explained in subsection III-C)
t=t+1

. Mo Ao min{\pi, A 1 1-p"
T, o) =25+ 22— upr, Aopa) Lf— rpt} ;

71 T2 br
V A1, A2
and therefore, by proposition 3:

THEOREM 5 [CODE-CONSTRAINED REGION]: Consider a
NACK system with overhearing probabilities pi, ps, trans-
mission rates 11, To and the ability to perform XOR coding
operations. The system’s throughput region is the area defined
by A1, A2 > 0 satisfying:

Mo A min{A1p1, Aapa} {1 _1-pr
1 T2 pr rf Ts

+
} <1 O
where 7, £ min{ry, s}, rr £ max{ry,r} and [z]* £
max(x,0). Note, that the throughput region for a system with
no network coding is simply given by Aj, A2 > 0 satisfying
;\—11 + ’T\—? < 1. Therefore we conclude that whenever the term in
the brackets [T is negative, network coding is not beneficial,
and the maximum throughput is achieved without coding.

Using proposition 3 we conclude that any epoch-based
policy o(w),m € Iy, achieves the code-constraint region.

A very important consideration is the following: if r; = 7o,
or if py = 1 the terms cancel out and (3) equals (2), therefore
the code-constrained region of the NACK system and the
throughput region of the ACK system are equal. That is, if
the maximum rates that each receiver can successfully receive
packets are equal, or if the overhearing of the faster rate is
perfect, the code-constrained throughput region of the NACK
system is equal to the throughput region under arbitrary
coding. This is an important result, since despite the lack of
overhearing reports, simple XOR policies in the set I, with
statistical knowledge and NACKs can achieve the maximum
system efficiency. In Fig. 5 we plot the regions for two
different settings.

VIII. OVERHEAD COMPARISON

In this section, we study the throughput-overhead tradeoff

between the ACK and NACK systems.

3.0/
2.5

3.0/%
25

2.0) 20 ., ~
M5 ACK =", A5 ACK =",
NACK — ", NACK— ™,
10 From [18] . O From[ig]- e
0.5/ No Network o, 0.5/No Network « e,

0.0 Coding o 0.0 Coding oy
00 05 10 &5 20 25 30 0.0 0.5 1.0 1.5 2.0
1 1

Fig. 5. Throughput regions of no network coding and ACK system and code-
constrained regions of the NACK system with or without storing XORs (from
[18]). Parameters: p;1 = 0.7,p2 = 0.8,72 = 3 and r1 = 3 (left), r; = 2
(right).

For the ACK system, assuming N7, N3 represent the set
of neighboring nodes of sources 1,2, the average rate of
overhearing reports W9(\;, \y) is calculated as

WA, o) = Ay Z Dii+ A2 Z D2,

i€N1—R i€EN2—R
where 1 — p; ; is defined to be the erasure probability of the
link from source 1 to neighbor 7 and 1 — p, ; likewise. For the
NACK system, note that the number of NACK messages is
upper bounded by the number of bad packets. We say upper
bounded because it is possible that bad packets are sent as
singleton, in which case they are decoded. good packets are
transmitted without feedback messages. Thus, using policy 7%,
the corresponding rate is

W (A1, A2) = g7 OR(1 — p1) A1 + @3 OR(1 — p2) s,

where ¢XOR is the fraction of bad packets of flow i that are
transmitted using XOR controls. If 1 — pr < %,
coding is performed and thus ¢fOR = ¢XOR = 0. Else, we can
find an upper bound, when (A1, A2) lies on the boundary of

the throughput region.

—XOR __ 1
qa = A2p2
A1p1

no

if Aip1 < Aapo
otherwise.

and similarly for 3R by exchanging 1 and 2. There are four

reasons identified why the NACK system is more efficient in
terms of the number of report messages (i.e. overhead).

(i) In the NACK system NACKSs can be used, while in the
ACK system, ACKs are necessitated. This makes sig-
nificant difference if the overhearing probabilities p1, po
are close to 1, as is the case where we expect higher
throughput benefits.

If A1p1 # Aapo, some of the bad packets are transmitted
natively, thus ¢X°R < 1 for some i.

When the source nodes have multiple neighbors, reports
from neighbors that are not useful to the coding node
(relay) are avoided in the NACK system.

If (A1, A2) is in the interior of the region without coding,
then the overhead for the NACK is very small.

Let A7 = {R,2} and N3 = {R, 1}, in which case the best
performance of the ACK system is obtained with respect to
(iii) above. Also, we calculate the worst case performance for
the NACK system as regards (iii) and (iv).

In Fig. 6, 7, we present performance plots for through-

(ii)
(iii)

@iv)

A: 1.00 Ao1.00 =T .
A Ade =
det 0.95 dety g5 —ols
0.90 i_ 7
0.85 NS 0.90 =0/6
0.80 AN
> 0.85
0.75 No Ne%\\%@\oding No Network Coding
02 04 06 08 1.0
02 04 p1046 0.8 1.0 P,

Fig. 6. Throughput efficiency varying p;. Parametric plots vs r1 (left) and
vs pa (right). Default parameters: A\y = A2, p2 = 0.9, r1 = 2, ro = 3,
« = 1. Blue lines refer to no network coding comparative performance.

w10 08
det, e
w*o.8 W 6
0.6
o4 0.4
02 02
004502 0.4, 06 08 1.0 000 02 04 p, 06 08 10

Fig. 7. Worst-case report overhead varying p;. Parametric plots vs 71 (left)
and vs pa (right). Default parameters: A\ = A2, p2 = 0.9, r1 = 2, 79 = 3.
put efficiency f\‘i“’ defined as the ratio of the maximum sum

et

throughput /\‘f(oz) + A3(a) for the two systems and worst-
case report overhead % defined as the ratio of average
messaging rate calculated on the boundary of the NACK
system region. In Fig. 6. we observe that the throughput drops
significantly when pr is small, i.e. when the fast flow has weak
overhearing channel (see the case for 1y = 5 in the left).
In all other cases, the NACK system sacrifices only a small
fraction of the throughput (stays always above 95%). In Fig.
7, the corresponding gain in overhead is shown. In the left
plot, where pa = 0.9, we see that the NACK system requires
at most 50% of the messages used in the ACK system (if
r1 = 5), while, independently of rate, this figure becomes
as small as 5% if the probabilities are both high (e.g. for
p1 = p2 = 0.9), which is the most practical case. In the right
plot we verify that the NACK system is not a good option
when both probabilities have middle values.

IX. DELAY PROPERTIES

In the previous sections we studied simple evacuation mech-
anisms that provide maximum throughput if they are mapped
to the real system with arrivals via the epoch framework. Here,
we focus on the delay aspects of the system. In particular
we observe that although epoch based policies are throughput
optimal, they may suffer from high delay and jitter. Therefore
we propose heuristics which mimic the evacuation behavior
but also attempt to strike a good balance between throughput
(long term efficiency) and delay (short term efficiency).

We measure delay as follows. Consider flow ¢ and name
the packets with their index of arrival. Denote by M;(t) the
number of packets that have arrived up to time ¢. Note, that
M;(t) is also the ID of the most recently arrived packet. Also,
denote by D;(t) the greatest packet ID such that all packets
with IDs 1,..., D;(t) have departed the system at time t. We
define the delay of flow i at slot ¢ as the difference M;(t) —
D;(t). Observe that the delay reduces to the number of packets
in the system when the packets depart the system in order of
arrival. This delay metric is most relevant to protocols that
emphasize on sequenced packet delivery; a prominent example

of such protocols is the widely used TCP protocol. A small
delay means that the system does not lack behind in delivering
the packets in the order they are transmitted. Ideally we would
like to minimize the expected long term delay, or in formal
terms:

T

> (Mi(t) — Di(t)) =0, Vi.)

It is known that delay minimization in networks with
dynamic control is a difficult problem. Explicit solutions only
exist for symmetric networks [19]. In this paper we focus
on heuristic solutions whose good performance is verified by
simulations.

We plan to use our epoch-based policies proposed for
throughput optimality in sections VI and VII. There are two
important considerations regarding the delay performance of
these policies. Below we discuss these considerations which
will lead us to delay-driven enhancements.

A. Delay due to Missed Coding Opportunities

Missed coding opportunities occur when good packets that
can be paired are sent singleton instead. This can happen
when good packets that are blocked from entering the system
because the epoch at the time of arrival is not yet over. Then
these packets fail to pair with good packets in the system from
the opposite flow that have no pair within the system and are
sent singleton instead. This has no impact on throughput (as
it was proven optimal) but it has impact on packet delay. This
motivates us to unblock packets and allow them in the system
at the moment of their arrival.

Yet the problem may still persist due to the way we solve
ties. When there are both good packets without a pair in the
system and bad packets, we choose randomly between them
to send singleton (see Algorithm 1, line 6). Suppose that good
packets are randomly chosen for singleton transmission and
their queue is emptied. If at the next slot good packets of
the opposite flow arrive at the system (because we unblocked
arrivals, see the previous paragraph) then the arriving good
packets would fail to pair because the opposite good queue
is empty. This problem also impacts delay and motivates us
to choose bad singleton controls over good singleton controls
when both exist, i.e we could first send the bad packets and
in the next slot pair the good packets in the system with the
arriving good packets.

To address this problem, we allow packets to enter the
system at the moment of their arrival and we refrain from
taking singleton good controls until it is the only remaining
choice. This policy is not epoch-based but we expect through-
put optimality to be maintained since the only difference
in controls is that pair transmissions between good packets
will occur where otherwise both packets would have been
transmitted singleton. The same arguments can also be used
for the NACK system; unknown packets that would otherwise
be transmitted singleton will now be transmitted paired with
other unknown or good packets.

B. Delay due to Dummy Packets

Recall that when there are not enough packets for a given
control, we send dummy packets. This is done even when
there exist other packets in the queues to be transmitted,

which has impact on delay. A simple scenario to demonstrate
this problem is this: consider an ACK system with r; = 2,
ro = 3 and all queues have exactly one packet. The throughput
optimal epoch-based policy proposed in section VI will choose
g1 @ g2 and then a dummy packet will be used to patch the
transmission. This will evacuate the good queues. But during
this slot, a bad packet from flow 1 could also be transmitted
instead of a dummy packet, since the rate of control g; ® g
is the same as b;. This would improve the delay of the
bad packet, thus dummy packets exacerbate the delay of real
packets. Similar arguments can be constructed for the NACK
system. Since in a lightly loaded system this phenomenon will
occur frequently, we need to enhance our policies.

To address this problem we give preference to controls that
have enough packets to transmit prior to controls that require
dummy packets. When all possible controls involve the use of
dummy packets, we choose one of the two rates and attempt
to transmit as many packets as possible by mixing several
controls together. The choice of rate is such that we maximize
the expected amount of packets we can evacuate. One example
would be to transmit both the XOR combination of the good
packets and the bad packet of the slow flow in the example of
the previous paragraph. This way we end up transmitting the
maximum number of packets at each slot. Similar policies that
maximize the number of departed packets in every slot have
been proposed before for delay minimization in symmetric
systems [20].

C. Enhanced Policies and Simulation Results

Algorithm 3 Class X4 for the system with arrivals
Input: An ACK system state at slot ¢
Output: Control decision c(t)
if a1 D go € Cde[(t) then C(t) =aJ1 D g2
else if b; € Cye(t) or by € Cyu(t) then c(t) = by or
C(t) = b2
(whichever of the two controls is available, but if both are
available, choose the control that evacuates the packets
with the smallest ID)
else if g1 € Cye(t) or g2 € Cue(t) then c(t) = g1 or go
(whichever of the two controls is available; due to order of
chosen controls, at most one of those controls is available)
else Set control ¢(¢) to transmit as many packets as possible
with a chosen rate.

In Algorithms 3 and 4 we propose the delay-aware policies
for the system with arrivals. These policies are based on the
epoch-based policies proposed in previous section where the
delay enhancements explained in the previous paragraphs are
also added. For the sake of brevity, when we write control
c(t) € Caer(t) (or Cypo(t)), we mean that the packets that are
available for transmission under this control are more or equal
to the rate used for this control.

In Figure 8, we show the throughput region of our imple-
mentation with the above heuristic for the system with arrivals
as it occurs in our simulations. Notice that there is no differ-
ence between the throughput region of epoch-based policies
and their delay-aware counterparts, which is a indication that

Algorithm 4 Class X, for the system with arrivals
Input: A NACK system state at slot ¢
Output: Control decision c(t)
slow = argmin; (r;,4 € {1,2})
if g1 @ g2 € Cyo(t) then c(t) = g1 D go
else if bg00 € Cso(t)) then c(t) = bsjow
(During this step, control by, is used in the way
explained in subsection III-C)
else if u1 @ go € Cyo(t) or ua® g1 € Cyo(t) them ug Dug €
Csto(t)
(whichever of the two controls is available; due to order of
chosen controls, at most one of those controls is available)
else if u; @ us € Cyo(t) then c¢(t) = uy D uy
else if w1 € Cyo(t) or ug € Cyo(t) then c(t) = ug or usg
(whichever of the two controls is available; due to order of
chosen controls, at most one of those controls is available)
else if g1 € Cyo(t) or go € Cyo(t) then c¢(t) = g1 or go
(whichever of the two controls is available; due to order of
chosen controls, at most one of those controls is available)
else Set control ¢(t) to transmit as many packets as possible
with a chosen rate.

1 [TPReg. ACKm—— W [TPReg ACK—
| XOR Reg. NACK \ | | XOR Reg. NACK
0.5/ sim. Reg. ACK 0.5 sim. Reg. ACK
o LSim Reg. NACK - ‘ o LSim.Reg.NACK -
0 0.5 1 1.5 2 0 0.5 1 1.5 2
M M

Fig. 8. Throughput region achieved by our algorithm implementation in our
simulations. In both cases, (r1,72) = (2,3). (left) Case for (p1,p2) =
(.7,.8). (right) Case for (p1,p2) = (.6,.5).

our delay modifications do not hurt throughput optimality. We
conducted our simulations for 105 time slots per experiment.
To find the throughput region, we used iterative convergence,
where for a number of 30 points, equally spaced in the x-axis
(A1) we computed the corresponding y coordinate (A2) such
that the system is marginally stable. Stability is determined
if delay surpasses a certain threshold, for our case more than
10* packets for some t and 4. The tolerance used is 1073,

In Figure 9 we present the delay performance of our policies
as compared to Random Linear Network Coding -a state of the
art algorithm for network coding- a backpressure-type policy
proposed in [21] and COPE.

1) Our simulation of RLNC

This policy considers the packets at the input in different
generations of size g. In each generation, g packets from
each receiver are coded together forming NV, equations with
randomly drawn coefficients. In some cases, some receivers
do not participate if they do not have any packets. We assume
an idealized version of the policy where the coefficients are
pseudo-random and they result in linearly independent coded
packets. These equations are transmitted until all receivers
have decoded all N, packets. Side information packets are also
linearly independent equations that can be used to accelerate

the decoding. However, the required transmissions are calcu-
lated based on the receiver with the smallest number of side
information packets. When the first generation is decoded, the
transmissions stop and we proceed to the second generation.
When all the packets of the generation are decoded we move
to the next generation. We expect this policy to be inefficient
compared to the optimal because it requires all the receivers to
decode all packets of a generation for those packets to depart
the system which exacerbates delay. Moreover, the slowest
possible rate is chosen for transmissions so that all receivers
can decode. This puts RLNC in a significant disadvantage if
the service rates are different.

Another important consideration with RLNC is that the con-
troller is completely oblivious to overhearing events. Consider
the scenario that a whole generation of packets are bad in both
flows. Due to lack of knowledge on overhearing events, it will
try to code together bad packets, resulting in their delayed
departure since their linear combinations will be transmitted
at the slowest rate. Our policies have feedback on overhearing
events and therefore can use this knowledge to send bad
packets of the faster flow at the faster rate.

2) Work at [21]

Here, we consider a backpressure-based mechanism for
both our feedback systems. The backpressure is applied to
a network of virtual-queues as explained in [21]. A notable
disadvantage of this approach is that the receivers do not store
XORed packets at their buffers; a received coded packet is
either immediately decoded or discarded. The lack of storing
XORed packets in receivers results in the loss of some coding
opportunities in the NACK system.

3) COPE [1]

Here we consider the application of the COPE algorithm in
our model. COPE proposes a statistical mechanism whereby
packets are XORed in FIFO order of their arrival when the
probability that they will be decoded is greater than a threshold
G. The default is G = 0.8 which we use in the simulations.
The COPE algorithm can work in two modes of operation.
First, it delays packets until there are enough packets to code
with. Second, it never delays packets i.e it transmits when
there is a transmission opportunity. Since the first choice is
suboptimal for packet delay, we only consider the second mode
of operation.

On the ACK system, the COPE algorithm, denoted COPE-
ACK, has full knowledge of when a coded packet can be
decoded or not. Therefore the decision to code two packets
is straightforward, since the probability of correct decoding is
either 1 or 0. In this case COPE-ACK is similar to our ACK
policy (Algorithm 3) given that COPE-ACK never delays
packets. Consequently, we do not simulate COPE-ACK.

On the NACK system however, the COPE algorithm, de-
noted COPE-NACK, p;,ps and NACK replies inform the
relay on the probabilities of correct decoding. After using the
statistics, COPE-NACK then XOR codes packets depending
on G. In this way, our work is an improvement of COPE-
NACK in providing a different threshold for the XOR coding
algorithm to start coding packets (i.e 1 — py < %)
and prove that this threshold is optimal. Additionally, with
our buffer mechanism where the receivers store non-decoded

- 10 -
140} ACK—— : NACK——
RLNC RLNC

120r Bp 1 80 pBp :
100. i COPE

601 8
80 | 1
60 - 1 40f .
40 8

20(8
20 - 1
o _

T T 1 1 1 - 0 L 1 1
1.3 13514 14515 15516 16! 06 08 1 12 14 16 1.8

Fig. 9. Average delay performance for both the ACK and NACK systems as
compared to Random Linear Network Coding, COPE and the back-pressure
policy described in [21], with load factor A = (A,). X -axis denotes A, Y-
axis denotes mean delay. (left) ACK case. (right) NACK case. For all cases, the
overhearing probabilities are (p1,p2) = (.7,.8) and rate (r1,72) = (2,3)

10 100

ACK—— NACK—
RLNC
80 RLE% 1 80 Bp
COPE
60 [60 r
401 40r i
201 20 F]
O - T T L L L - O’ L " e L -
15 155 16 165 1.7 1.75 1.8 1.85 06 08 1 12 14 16 18

Fig. 10. Average delay performance for both the ACK and NACK systems as
compared to Random Linear Network Coding, COPE and the back-pressure
policy described in [21], with load factor A = (A, .5)). X -axis denotes \, Y-
axis denotes mean delay. (left) ACK case. (right) NACK case. For all cases, the
overhearing probabilities are (p1,p2) = (.7,.8) and rate (r1,72) = (2, 3)

packets, we quickly recover from decoding errors within a slot
of their occurrence.

In Fig 9 and 10 we show that our proposed delay-aware
policies outperform RLNC, COPE-NACK and backpressure-
based policies in all studied examples.

In Figures 11 we provide some experiments with arrival
rates within the stability region but close to the boundary,
along with system backlog. We chose our simulations for a
small time interval (1000 slots) to show how M;(t) — D;(t)
evolves since for long simulations they become indistinguish-
able.

X. RELATED WORK

Most wireless network coding schemes use the ACK system
[2]-[6], [22]. These schemes suffer from the problem of
keeping the coding nodes informed with the packet indices
that have been overheard by its nexthops. NCRAWL [23]
addresses that by using reception reports only when a node
can’t decode a packet. This reduces the amount of reports,
but increases the likelihood that the coding node will make
a mistake in predicting which packets are overheard by the
nexthops, something that inevitably lowers throughput. We
use this model of reporting in the 2-user NACK model. A
different approach is introduced by I>’NC [24] which combines
interflow with intraflow coding to reduce the complexity
of acknowledgment messages at the expense of immediate
decodability.

Stability in networks with interflow network coding without
overhearing is studied in [3] and [11], [25]-[27]. Also, in

60

T T 90 T T
Backlog in flow 1 ——— Backlog flow 1
sol Delayflow1 | 80 Delay flow 1

70F]
401 1 60t 1
306 |1 S0 b
40+ i
20 130t -
20 / I i

10+ M MWM M
AL T ol RN

vuhl':u‘MN‘WVMHM\MA‘ r‘w"'lmvjl‘ A A N-m‘:bw . . W\“mmﬁ% . \MA
200 400 600

0% g0 1000 "o 200 400 600800 1000

Time slot Time slo

Fig. 11. Overview of delay for a system with service vector (r1,72) = (2, 3)
and overhearing probabilities (p1,p2) = (.7,.8), with load vector close to
the boundary of the throughput region (97% of capacity). We also provide the
backlog of the system at each slot. The difference of delay minus the backlog
is indicative of the instantaneous number of out-of-order packets. (left) ACK
system with arrival vector (A1, A2) = (1.72,1.63) (right) NACK system
with arrival vector (A1, A2) = (1.72,1.46)

[18], [28] the studies are extended to capture overhearing
with reports, which corresponds to the 2-user ACK system.
Note that in these works, the code-constrained stability region
is provided, i.e. the stability region under the assumption
that XOR coding is used. The 1-hop model is also studied
in [10] where the information theoretic capacity is given in
the case of overhearing events provided as side information-
a model equivalent to the 2-user ACK system we study
here. With the exception of [18], all these works do not
consider the 2-user NACK system. In [18], the 2-user NACK
system with feedback is studied under the assumption that
receivers are not allowed to store coded packets and the code-
constrained throughput region is provided in parametric form.
The obtained throughput region is strictly smaller than that
of the 2-user ACK system. In this work, we extend [18] by
allowing the storage of coded packets. We show, that if r; = ry
or pr = 1, then the 2-user NACK system can achieve the same
throughput as the 2-user ACK one by the use of a simple
XOR-based scheduling policy and feedback reports. Thus, the
number of reports can be reduced significantly in this case
without throughput losses.

Studies of the broadcast channel with erasures relate to our
work, see [29]. In these studies, the problem is different since
the side information for decoding is obtained from past erased
transmissions; however, the techniques used are similar. In
[30], the authors show that the capacity can be achieved by
XOR coding for the case of 2-4 receivers. In [15] the authors
study the 2 user ACK system on a channel with erasures
and provide an optimal policy based on Deficit Max-Weight
Algorithm [31] applied on a virtual network queue. A different
but related research topic is that of index coding; subsets of
information bits are known to subsets of the receivers and
we seek the transmission policy that minimizes the time to
complete reception by all receivers, [17], [32]. Our work
differs from index coding in the fact that the source has partial
knowledge of what information each receiver has. Also, for the
2-user ACK system, we extend the index coding problem to
variable transmission rates r1, r2. The relation between index
coding and wireless network coding with overhearing is further
explored in [33].

XI. CONCLUSION

In the problem of reporting overhearing events in wireless
network coding, we study the ACK and NACK system. We
derive analytical expressions for the throughput region of the
first and the code-constrained region of the second and we
show that the two are equal when ry = ry or pr = 1.
When r; # ro, we analyze the throughput-overhead tradeoff
and conclude that the NACK system is a very efficient
approach when the overhearing probabilities are sufficiently
high. Alongside with the theoretical results, we propose simple
and efficient evacuation policies which can be used in practice
to achieve optimal throughput for the case of two receivers or
performance for more than two receivers. We extend these
policies by proposing delay enhancements and evaluate those
by simulations.

ACKNOWLEDGMENTS

The work of G. Paschos was supported by the WiNC project
of the Action: Supporting Postdoctoral Researchers, funded by
national and Community funds (European Social Fund).

The work of C. Fragiadakis is supported by scholarship from
the National Scholarship Foundation of Greece from funds
by the “Education and Lifelong Learning” Program of the
European Social Fund .

This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

REFERENCES

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in The Air: Practical Wireless Network Coding,” in ACM
SIGCOMM, 2006.

[2] S. Katti, H. Rahul, W. Hu, D. Katabi, M.Medard, and J.Crowcroft, “Xors
in the air: Practical wireless network coding,” IEEE/ACM Transactions
on Networking, vol. 16, pp. 497-510, Jun. 2008.

[3] P. Chaporkar and A. Proutiere, “Adaptive Network Coding and Schedul-
ing for Maximizing Throughput in Wireless Networks,” in ACM MOBI-
COoM, 2007.

[4] S. Rayanchu, S. Sen, J. Wu, S. Banerjee, and S. Sengupta, “Loss-Aware
Network Coding for Unicast Wireless Sessions: Design, Implementation,
and Performance Evaluation,” in ACM SIGMETRICS, 2008.

[5] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading Structure
for Randomness in Wireless Opportunistic Routing,” in ACM SIG-
COMM, 2007.

[6] B. Scheuermann, W. Hu, and J. Crowcroft, “Near-Optimal Co-ordinated
Coding in Wireless Multihop Networks ,” in ACM CONEXT, 2007.

[7]1 1. Broustis, G. S. Paschos, D. Syrivelis, L. Georgiadis, and L. Tassiu-
las, “NCRAWL: Network Coding for Rate Adaptive Wireless Links,”
arXiv:1104.0645.

[8] G. S. Paschos, C. Fragiadakis, L. Georgiadis, and L. Tassiulas, “Wireless
Network Coding with Partial Overhearing Information,” in Proceedings
of IEEE INFOCOM, Apr. 2013.

[91 A. O. E Atya, L. Broustis, S. Singh, D. Syrivelis, S. V. Krishnamurthy,

and T. L. Porta, “Wireless Network Coding: Deciding When to Flip the

Switch,” in IEEE INFOCOM, 2013.

C.-C. Wang, “On the capacity of wireless 1-hop intersession network

codinga broadcast packet erasure channel approach,” Information The-

ory, IEEE Transactions on, vol. 58, no. 2, pp. 957-988, 2012.

N. M. Jones, B. Shrader, and E. Modiano, “Optimal routing and

scheduling for a simple network coding scheme,” in Proceedings of

IEEE INFOCOM, Apr. 2012, pp. 352-360.

L. Jilin, J. Lui, and M. Dah, “ How many packets can we encode? an

analysis of practical wireless network coding,” in JEEE INFOCOM, Apr.

2008, pp. 371-375.

[10]

[11]

[12]

[13] P. Mannersalo, G. S. Paschos, and L. Gkatzikis, “Performance
of wireless network coding: motivating small encoding numbers,”
arXiv:1010.0630v1, 2010.

J. Qureshi, C. H. Foh, and J. Cai, “Optimal solution for the index coding
problem using network coding over gf(2),” in Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2012 9th Annual IEEE
Communications Society Conference on, June 2012, pp. 209-217.
W.-C. Kuo and C.-C. Wang, “Robust and optimal opportunistic schedul-
ing for downlink 2-flow inter-session network coding with varying
channel quality,” in 33rd Conference on Computer Communications
(INFOCOM), Toronto, Canada. IEEE, 2014.

L. Georgiadis, G. S. Paschos, L. Tassiulas, and L. Libman, “Stability and
Capacity through Evacuation Times,” in Information Theory Workshop,
(ITW), Sep. 2012.

M. J. Neely, A. S. Tehrani, and Z. Zhang, “Dynamic Index Coding for
Wireless Broadcast Networks,” in INFOCOM, Apr. 2012.

G. S. Paschos, L. Georgiadis, and L. Tassiulas, “Scheduling with
Pairwise XORing of packets under Statistical Overhearing Information
and Feedback,” Queueing Syst. Theory Appl., vol. 72, no. 3-4, pp. 361—
395, Dec. 2012.

M. J. Neely, Stochastic Network Optimization with Application to Com-
munication and Queueing Systems. Morgan and Claypool Publishers,
2010.

L. Tassiulas and A. Ephremides, “Dynamic scheduling for minimum
delay in tandem and parallel constrained queueing models,” Ann Oper
Res, vol. 48, no. 4, pp. 333-355, Aug. 1994. [Online]. Available:
http://dx.doi.org/10.1007/BF02024520

G. S. Paschos, L. Georgiadis, and L. Tassiulas, “Optimal scheduling of
pairwise XORs under statistical overhearing and feedback,” in RAWNET
workshop: Workshop on Resource Allocation and Cooperation in Wire-
less Networks, WiOPT, Apr. 2011.

S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“Xors in the air: practical wireless network coding,” IEEE/ACM Trans-
actions on Networking (TON), vol. 16, no. 3, pp. 497-510, 2008.

1. Broustis, G. S. Paschos, D. Syrivelis, L. Georgiadis, and L. Tassiulas,
“NCRAWL: Network Coding for Rate Adaptive Wireless Links,” fo ap-
pear in EURASIP Journal on Wireless Communications and Networking,
2013.

H. Seferoglu, A. Markopoulou, and K. K. Ramakrishnan, “I2nc: Intra-
and inter-session network coding for unicast flows in wireless networks,”
in Proceedings of IEEE INFOCOM, Apr. 2011, pp. 1035-1043.

T. C. Ho, Y.-H. Chang, and K. J. Han, “On Constructive Network
Coding for Multiple Unicasts,” in 44th Annual Allerton Conference on
Communication, Control, and Computing, 2006.

A. Eryilmaz and D. S. Lun, “Control for Inter-session Network Coding,”
in Proc. Workshop on Network Coding, Theory & Applications, 2007.
Y. E. Sagduyu, D. Guo, and R. Berry, “Throughput and stability of
digital and analog network coding for wireless networks with single
and multiple relays,” in Proceedings of the 4th Annual International
Conference on Wireless Internet, ser. WICON ’08, 2008, pp. 68:1-68:9.
A. Khreishah, C.-C. Wang, and N. B. Shroff, “Rate control with pairwise
intersession network coding,” IEEE/ACM Trans. Netw., vol. 18, no. 3,
pp. 816-829, Jun. 2010.

L. Georgiadis and L. Tassiulas, “Broadcast Erasure Channel with Feed-
back — Capacity and Algorithms,” in Workshop on Network Coding,
Theory and Applications (NetCod), Jun. 2009.

S. Athanasiadou, M. Gatzianas, L. Georgiadis, and L. Tassiulas, “XOR-
based coding algorithms for the 3-user broadcast erasure channel with
feedback,” in RAWNET workshop: Workshop on Resource Allocation
and Cooperation in Wireless Networks, WiOPT, Apr. 2012.

H. C. Zhao, C. H. Xia, Z. Liu, and D. Towsley, “A unified modeling
framework for distributed resource allocation of general fork and join
processing networks,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 38, no. 1. ACM, 2010, pp. 299-310.

M. Chaudhry and A. Sprintson, “Efficient algorithms for index coding,”
in INFOCOM, Apr. 2008.

C. Fragiadakis, G. S. Paschos, and L. Tassiulas, “On the wireless
network coding with overhearing and index coding,” in submitted to
IEEE CAMAD, 2013.

P. Billingsley, Probability and Measure.

APPENDIX A
ACK ANALYSIS
This appendix covers the proof of theorem 4 and is struc-
tured as follows. To prove the theorem we need to derive
a lower bound on evacuation time achievable by any policy.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34

John Wiley & Sons, 1995.

Since this is the best possible performance, it naturally corre-
sponds to an outer bound for the throughput region. To obtain
the best performance we assume arbitrary coding available. In
the subsequent sections we evaluate the class of evacuation
policies IT;.; and then combine the two bounds to derive the
result. For this appendix, we let s = min{ry,r2}, Npin =
min{N1, Na}, Nynax = max{Ny, No}, T (ky, kp) £ 5 4

ky Hmin{M;,M2}]
T max{ry,r2}

A. Lower Bound under Arbitrary Coding

THEOREM 6 [LOWER BOUND WITH ARBITRARY CODING]:
The ACK system satisfies under any 7 € I1:

T" (k1 ko) > T (1, ko),

Proof: The proof can be found in [8], pp. 4-5 section IV
and we omit it here due to lack of space. []

B. Upper Bound of 114

Let (k1,k2, N1, N2) be a system instance for the ACK
system. Let 7 £y if N; > Ny and 7 £ 7y, otherwise. Since
the policies in Ilg; do not depend on the values of the bits
in the packets, their evacuation times given a realization for
N1, Ny are deterministic. By counting slots for the two steps
of the policy, we have

Nmin Nma:r - Nmin
T (k1, k2, N1, Na) < { -‘ + { — -‘
Ts T
ki — N ko — N k k Nopin
NEESANCELA T T
T1 T2 T1 T2 Ts

for all w € Ilge;.
C. Optimality of I geq

Proof of theorem 4: Consider k; = [M\t], ¢ = 1,2
packets to be evacuated and note that the number of good
packets per flow are binomial random variables, denoted by
M (k1,p1), Ma(ka,p2) correspondingly. Since the status of
arriving packets (good, bad) is an i.i.d. process, we have,

M;([Nit] , pi
hmE[“Wl”]zmM, (©6)
t—o0 t
and also, by the strong law of large numbers,
— 00

Recall that T~ (K1, k2) is the infimum of the average evacuation
time over all policies, hence a lower bound of T". By Theorem
6:

}E[dee[(k‘hk‘g)] < T*(/ﬁ,k‘z) < E[T™(k1, ka2, N1, N2)] (8)

Where N; = M;(k;, p;,w). We calculate the limit of the upper
bound of TTr(kl7 ko) using the RHS of (5)

m M o min{M1(klt,pl,{w),kfi(kzt,pg,w)} + 4
. 1 1 max{ry,rs
tligloE t
_ E + @ ~ lim E min{Ml(kltapl7w)7MZ(k2t7p27w)}
rL rg t—oo tmax{ry,rs}
_k I ky — min{pi ki, paka} wop.,
T max{ry,r2}

where in the last step, we exchange the order of limit
expectation and min function due to uniform integrability
which follows from convergence in expectation (6) and almost
everywhere convergence (7) of the involved sequences, see
[34] Th. 16.14. We can repeat the limit derivation for the case
of T and derive the same limit, hence from (8) we conclude

A A

T, Ao) ==+ 2
1 2

min{p A1, p2Aa}
max{ry,re}

APPENDIX B
NACK ANALYSIS

This appendix provides the proof of theorem 5 by means
of two intermediate results, namely theorems 7 and 8. First
we focus on deriving a lower bound on how fast the NACK
system is evacuated in the asymptotic sense, assuming the use
of XOR-based policies. Then we also show that the asymptotic
rate is matched by our proposed policy.

For this appendix, we let 7y = maz{ry,ro},rs =
min{ry,ra}, ()t £ max{,0}, B £ A 4 22 _
min(A1p1,A2p2) |:L _ ﬂ} +)

pr Tf Ts
A. Lower Bound on the Growth Rate for the NACK System
THEOREM 7 [LOWER BOUND ON THE GROWTH RATE]: For
the NACK system, constrained to the use of XOR coding, it
holds

lim inf
t—o00

T" ([tAd], [tA2]) > B forall m cIl. (9)
t -)

Proof: We assume that the packets are served from the
queues in an FCFS manner, since all packets in a given queue
are statistically equivalent and thus reordering them does not
change the expected outcome.

Define C*(t) C Cqo(t) to be the set of controls that involve
XOR of two packets such that the corresponding packets are
available for transmission.

We partition the set of policies 11 to three sets, the subset of
policies using only single controls IL;,, the subset of policies
using always XOR controls if C*(¢) # 0, called Il and the
rest 1I,ix. We immediately get

k k
L+ 22 forall 7 € I,

T (ky, ko) > = + =2
1 T9

(10)
Next we will find a bound for policies in Il and ultimately
we will show that the policies in Il are outperformed (in
asymptotic sense) by those in I, U Iy
Remember that M; (k;,p;), i € {1, 2} is the random variable
that denotes the number of good packets in flow . Let M i, £
min{M;, Ms} and recall (f,s) = (1,2) if ry > ry and (£, s) =
(2,1) otherwise. Observe that the following hold under any
policy in Il
1) While XOR controls are still available (i.e. C*(t) # 0),
a good packet departs only if coded with another good
packet independently of the XOR control used.
2) At the end of the slot that the packets from one flow are
all evacuated for the first time, it holds: exactly M.,
good packets of both flows have departed.

We make the following helpful conventions:

1) In case of a {ug Gua} control involving two bad packets
followed by a single control of one of the two bad
packets (the combination evacuates both packets), we
assign one evacuated packet to each control.

2) Then, all XOR controls evacuate exactly one packet with
the exception of the control {g; ® g2}, which evacuates
two packets.

Let J(i) — 1,7 = 0,1 be the number of packets in front of the
M nin + i-th good packet in the unknown queue of the fast
flow at time 0. Using the law of iterative expectations we get
]E[J(O)] = E[Mmin] /pf and E[J(l)} = (E[Mmin] + 1)/pf~

All packets of the slow flow plus the bad packets of fast
flow of at least up to J(0) are evacuated in slots of 7y packets
requiring one transmission each. Then the remaining kq— .J(0)
packets of the fast flow are evacuated in slots of r; packets.
Thus, for any 7 € Ilxor

i (eIl

T's T
ks + J(0) — M,in ke— J(0
> gt S0 o) g [le= 0
Ts rr
k 1 —pp)E[M,in k E[M, in
ke, (= p)BMuin] | ke E[Myi
Ts DPfTs rf pfre
ki ks EMpnl [T 1—p]
T1 T2 pr LTf s]
which combined with (10) yields
- ki ko E[Mmn) [1 1—pf"
T(k17k2)2*1+*2—! — = bt ,
1 T2 pr LTf s |

for all 7 € Il U Il Using limgyoo —4 =
min{k;p1, kopo} found above, we conclude that

lim inf Tﬂ([t)\ﬂ (s])

t—o00 t

2 BTS(], S Hsin) onr7

Next, we consider set II,,;y.

Pick a policy m € iy Let Ly(ks, kg, w), L(ks, kg, w) be
random variables denoting the number of packets that were
evacuated with controls {gs},{us} and {gs},{us} respec-
tively. We have I; £ E[L;(ks,ky,w)] and 0 < I; < k;, for
ie{s [}

Let Go(ks, kf,w), Gy(ks, ky,w) be the number of good
packets that were evacuated with the above controls in the fast
and slow flow respectively. Furthermore, let H;(k,, k¢, w) be
the number of good packets evacuated by controls {g;}. By
the law of large numbers we have w.p.1:

lim Gi(kst,tkftw)

t—o0

= E[H;] + pi(E[L;] — E[H;]) > pil;.
(11)
All k, packets and the ky — Ly packets of the fast flow
are evacuated with rate r,. Therefore, the expected number of
timeslots needed to evacuate these packets is:
T, >E E + ky— Ly _ min (M, — G, My —Gf)
Ts Ts Ts
ks n ky—1ly Elmin(M, — Gs, My — Gy)]

T's T's T's

(12

where we have subtracted the time corresponding to XORs Constantinos Fragiadakis received his diploma
between good packets. Also, the inequality is due to the RN in Computer and Telecommunications Engineering

. from University of Thessaly, Greece in 2013. He is
assumption that no dummy packets were used. The rest Ly

. currently a M.S student in the same University and
ackets are evacuated with rate r¢ thus: works for the Center for Research and Technolo
p f gy

Hellas (CERTH). His research interests are in the

T, >E L f > l f 13 area of mathematical modeling, stochastic optimiza-

2= 7“_ = 7“_ : 13) tion and optimal control of networking systems. His
I I M.S studies are funded under scholarship from the

Therefore, using (12) and (13), we have: National Scholarship Foundation of Greece.

7 al sl ks k 1 1
T (klak2):T1+T22—+—f— f(———)
T's Ts rs T§

E[min(M; — Gs, My — Gf)]

Ts

Define B £ liminf, ., T Lltkel) 7oc oy,
Taking the limit in RHS above, using uniform integrability
of the considered random sequences, we get w.p.1:

(1) K, 11

Georgios S. Paschos received the diploma in elec-
trical and computer engineering from Aristotle Uni-
versity of Thessaloniki, Thessaloniki, Greece, in
2002, and the Ph.D. degree from the University of
Patras, Patras, Greece, in 2006, both in electrical and
computer engineering. From 2012 to 2014, he was a

T T T r
* . ° ’ ! Postdoctoral Associate with the Laboratory for Infor-
_n (ps (ks —1s), Pr (kf - lf)) (14) mation and Decision Systems (LIDS),Massachusetts
s : Institute of Technology (MIT), Cambridge, MA,

. . USA. He joined Huawei Research France in 2014.
Consider the conditions psks > pfkf, ps(ks — ls) > pf(k’f — His main interests are in the areas of wireless

l f) and p_f > :_; Using 0 < li < ki, = { s, f}, and subtracting communications, networks, and stochastic modeling.
B® from both sides of (14) we verify that B™® > Bred

under all possible combinations of the above conditions. M

B. Asymptotic Optimality of 1,

THEOREM 8 [ASYMPTOTIC OPTIMALITY OF POLICY 7*]:

For the NACK system operating under policy ™ we have

lim sup T ([tA1], [tA2])

t—o0 t

Leonidas Georgiadis (S76M78SM96) received the
Diploma degree in electrical engineering from
Aristotle University of Thessaloniki, Thessaloniki,
Greece, in 1979, and the M.S. and Ph.D. degrees in
electrical engineering from the University of Con-
necticut, Storrs, CT, in 1981 and 1986, respectively.
Since 1995, he has been with the Telecommunica-
tions Department, Aristotle University, Thessaloniki,
o A\ Ao Greece. His interests are in the areas of wireless
TT ()\1,)\2) = =4 =, ; networks, high-speed networks, distributed systems,

71 T2 routing, scheduling, congestion control, modeling,
and performance analysis.

< Brea, (15)

Proof: We follow the steps of the proof of Theorem 7
closely. First, note that if 1 —p > :—S is true, then 7* chooses
only single controls and we quickly get

If the condition is false, then 7* € Ilxog. The difference from
the proof of Theorem 7 is how packets between J(0) and J(1)
are treated.

T (k1 ko) < EHk“L JA) - Mmi”“ +EH]“_—J(O)H

T Tt
ks + J(1) — M ke — J(0
< E[s (1) LLLLLL Ty) f (0) +2 Leandros Tassiulas (S89M91SMO5F07) received
Ts rf the Diploma from the Aristotle University of Thessa-
k 1— ’ EIM,. . 1 k n EIM.,. ; loniki, Thessaloniki, Greece, in 1987, and the Ph.D.
== + M + — 4+ — - M +2 degree from the University of Maryland, College
g

Ts DfTs PrTs Tt pere Park, MD, USA, in 1991, both in electrical engi-
k1 ko E[Mmin] 1 1—pr neering. He has been a Professor of telecommu-
=4+ |— = +24+ —— . nication networks with the Department of Com-
1 T2 br rf Ts br mln{rh TZ} puter and Communication Engineering, University

. . : : of Thessaly, Volos, Greece, since 2002 and Associate
Taking the limsup of the above and taking into account Director of the Informatics and Telematics Institute

Theorem 7 completes the proof. u of the Center for Research and Technology Hellas
Combining theorems 7 and 8 proves theorem 3. (CERTH). His research interests are in the field of computer and commu-
nication networks with emphasis on fundamental mathematical models and
algorithms, architectures and protocols of wireless systems, sensor networks,

novel internet architectures, and network testbed experimentation.

