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Abstract—We model a service provisioning system under
attack by malicious intruders. The system consists of a bank
of servers providing service to incoming requests. Malicious
intruders generate fake requests attempting to degrade service
provisioning–the fake traffic is assumed low-rate and thus it
is practically undetectable. Legitimate traffic may be balanced
using available mechanisms in order to mitigate the damage from
the attack. We characterize the guaranteed throughput region,
i.e. the legitimate traffic intensities that are guaranteed to be
supported given specific intensities of the fake traffic. The result
is first obtained under the assumption that fake traffic is routed
using any static routing. Then, we relax this assumption allowing
time-varying attacks. We show, that depending on the resources
of the malicious attacker, and by the use of non-stationary
attack policies, some of the servers are effectively neutralized and
the guaranteed throughput is greatly compromized. We further
examine the interaction between specific policies and encounter
interesting phenomena such as the Join-the-Shortest-Queue is
not maximally stable defense policy under specific time-varying
attacks. The study offers defense insights, how to design the
system and how to balance the traffic to sustain such attacks.

I. INTRODUCTION

The Denial of Service (DoS) attack is an attempt to cause
a server to stop functioning properly. One common method of
attack involves saturating the target machine with communica-
tions requests, such that it cannot respond to legitimate traffic,
or it responds so slowly as to be rendered effectively unavail-
able. DoS attacks result in service downtime for corporations
and organizations that use Internet services, which in turn is
translated to significant financial costs [1], [2], [23].

A DoS attack may be manifested as a multi-source attack,
where multiple hosts coordinate to flood the victim with a
barrage of requests. This attack is called Distributed Denial of
Service (DDoS). In many examples, the malicious intruder(s)
may manipulate a great number of computers (or network
devices) in the ignorance of their users and use them to
launch a DDoS attack. Botnet services are also available on the
Internet for sale; it is possible to hire distributed computing
power in order to launch DDoS attacks at a cost of a few
dollars per hour. A recent article [24] uncovers the hidden
economical aspects of this war, the botconomics.

Defending against DoS and DDoS attacks typically involves
the use of a combination of attack detection, traffic classifi-

An abstract version of this paper was presented as poster in the ACM
Sigmetrics 2013 [21]. This work was supported partly through ONR grant
N00014-14-1-2190. The views and opinions expressed in this article are those
of the authors and do not necessarily reflect the official policy or position of
any agency of the U.S. government or Huawei technologies.

cation and response tools, aiming to block traffic identified
as illegitimate and allow traffic identified as legitimate [22].
Depending on the type of exploit, defending may be difficult.
Common exploits include manipulated social media, Peer-to-
Peer communications systems, TCP-SYN flood, HTTP GET,
and many others. For a taxonomy of DoS attack exploits and
defense mechanisms see [10], [20].

Since 2005, more elegant types of attack have appeared,
for example the pulsing attack [18] or the Low-rate DoS
(LDoS) attack. In these attacks, the participating computers
(also termed zombies) alternate the intensity of the attack
between low and high in order to avoid detection. Prior work
[17] explains how this pulsing attack can be optimized from
the scope of the attacker. Different names for this type of attack
exist; Reduction of Quality (RoQ) attack is studied in [8], [9]
and Denial of Quality (DoQ) attack is studied in [25]. We
collectively refer to these types of attack with the term stealth
DoS, also used in [6], [16], [28]. The difference from standard
DoS lies on the fact that the stealth DoS attack aims to reduce
the system’s resources and lead to service deterioration, rather
than leading to complete service interruption. This kind of
attack is harder to detect since it results in a typical behavior
of a critically loaded system, a situation which arises naturally
in systems with fluctuating demand.

Most defense mechanisms against stealth DoS attacks focus
on statistical processing of arriving requests [11], the success
of which however is based on the legitimate traffic exhibiting
a steady behavior with no significant peaks and bursts. In
this work, we assume that fake traffic is indistinguishable
from the legitimate one. Therefore, our work characterizes the
performance that can be guaranteed for the legitimate system
in spite of an attack of given intensity.

We consider a system described in Figure 1, where a
distributed server installation consisting of N servers, is under
a stealth DoS attack. The malicious intruders control a large
number of computers, clustered in botnets, which are able
to generate requests for fake traffic. Fake traffic is similar in
structure to legitimate and considered impossible to discern.
On the legitimate side of the system, we assume the existence
of machines which aggregate traffic and route it to servers
(dispatchers) as well as uncontrolled traffic which for example
selects a server according proximity criteria. We model bot-
nets, dispatchers, and users, by traffic streams that can reach
only a subset of the available servers. A study of static DDoS
attacks in more general topologies is found in [5].

We study the system sustainability. Given the capabilities of
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Fig. 1. A geographically distributed server installation under attack by botnets
controlled by a malicious entity.

the malicious agents expressed in terms of the amount of fake
traffic they could produce, a certain legitimate traffic intensity
is sustainable if acceptable service can be provided to the
legitimate traffic.

Initially, we assume that the fake traffic is directed to
each server according to fixed routing coefficients. Under
this model, we develop necessary and sufficient conditions
for the guaranteed throughput region, i.e., the legitimate
traffic intensities that are sustainable irrespective of the chosen
malicious routing coefficients. Then, we proceed by allowing
time-varying routing. In this extended model, we find that the
guaranteed throughput region is reduced due to the fact that
a non-stationary attack can effectively neutralize some of the
servers. In the dynamic model, the problem is very rich and we
observe unexpected phenomena from the interaction of the two
scheduling controllers, the attacking and the defending. This
is further demonstrated in section V, where the interaction
between specific chosen policies is studied.

II. SYSTEM MODEL AND DEFINITIONS

Consider the set of parallel servers N , {1, . . . , N}, where
server n has a constant service rate µn. Legitimate traffic
arrives in the system at a set of input streams L. At stream
l ∈ L the arriving traffic has intensity al and can be routed to
a subset of servers denoted with Sl ⊆ N .

Malicious intruders attempt a stealth DoS attack in order to
disrupt the operation of the legitimate system. In particular, the
attack is coordinated through a set of malicious input streams
M, where stream m generates fake traffic with intensity bm
and is capable of routing traffic to servers in the subset Qm ⊆
N . See Figure 2 for an example of the studied system in
terms of a bipartite graph. Throughout the paper we make the
following modeling assumptions:

(a) Input streams (both legitimate and malicious) do not
queue traffic and therefore they must route it to servers
immediately.

(b) The attack is undetectable.
(c) The servers do not distinguish fake traffic from legitimate.

There exist two routing controllers with conflicting interests,
the legitimate (defending) and the malicious (attacking). The
legitimate is interested in stabilizing the system and the
malicious in destabilizing it; stability will be explained shortly.
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Fig. 2. An example of the system in terms of bipartite graph for N = 2
servers, |L| = 3 legitimate streams and |M| = 2 malicious streams. Also,
in this example S1 = Q1 = {1}, S2 = Q2 = {1, 2} and S3 = {2}.

A. Static Malicious Routing

To obtain intuition for the system operation we begin our
analysis with the static routing model; this is relaxed in section
IV. Additionally, the following static assumption is made:
S.1 The malicious controller chooses first the routing co-

efficients and then the legitimate controller learns this
selection and chooses the best static routing response.

Assumption S.1 is equivalent to assuming a static attack and
a dynamic defense, oblivious to the attack.1 The studied sce-
nario is of high practical interest since it captures cases where
the intruder cannot make online routing decisions, e.g. due to
constraints from the application or due to limited capabilities
of the infrastructure with which the attack is launched. The
case where both controllers make static decisions oblivious to
each other is not the focus of this paper.

The legitimate controller splits traffic to allowable servers
according to routing coefficients fln, (l, n) ∈ L ×N .

Definition 1. (Legitimate policy f ) A legitimate routing pol-
icy is a matrix (fln) with nonnegative elements having the
following properties:∑

n∈N
fln = al, ∀l ∈ L

fln = 0, if n /∈ Sl.

Let Π1 be the set of all legitimate policies. The malicious
controller operates in a similar manner.

Definition 2. (Malicious policy φ) A malicious routing policy
is a matrix (φmn) with nonnegative elements having the
following properties:∑

n∈N
φmn = bm, ∀m ∈M

φmn = 0, if n /∈ Qm.

Let Π2 be the set of all malicious policies.
According to the classical stability condition, a server n

is stable if the aggregate arrival traffic intensity is smaller or
equal to its service rate. From the practical viewpoint, though,
the stealth DoS attack is considered successful only if service
to legitimate traffic fails. Thus, if some servers are unstable
in the classical sense but they are avoided by the legitimate
traffic then the system remains sustainable and the attack has
failed. To capture this phenomenon, we use an unconventional
stability definition as follows:

1The equivalence is related to the adaptivity of dynamic policies to time-
varying service. A formal proof is omitted.
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Fig. 3. Example 1: The stability region is reduced when the system is attacked
by a malicious adversary using policy φ̄ and traffic intensity b = 1.

Definition 3. (System Stability) A server n ∈ N is stable if
at least one of the following conditions is satisfied
(i)
∑
l∈L fln +

∑
m∈M φmn ≤ µn (classical stability)

(ii)
∑
l∈L fln = 0 (zero legitimate traffic).

The system is stable if all servers are stable in the above sense.

Let a , (a1, . . . , a|L|) denote the vector of legitimate
traffic intensities. Below we extend the standard notion of
system stability region to include the impact of an attack with
intensities b , (b1, . . . , b|M|) and routing policy φ.

Definition 4. (Stability Region Λφ
b ) The stability region Λφ

b

under an attack with intensities b and fixed malicious routing
policy φ ∈ Π2, is the set of all a for which there exists a
legitimate policy f ∈ Π1 such that the system is stable.

Moreover, we define the notion of guaranteed throughput
region as the set of legitimate traffic intensities a which are
stabilizable regardless of the malicious policy used.

Definition 5. (Guaranteed Throughput Region Λb) The guar-
anteed throughput region Λb under an attack with intensities b,
is the set of all a such that for any malicious policy φ ∈ Π2

there exists a legitimate policy f(a,φ) ∈ Π1 such that the
system remains stable.

The guaranteed throughput region is parametrized by the
fake traffic intensity, b. For b large enough, Λb might contain
only the zero vector 0 , (0, 0, . . . , 0), which implies that
even arbitrarily small legitimate traffic intensities cannot be
guaranteed. In practical terms, we can think of such a situation
as a regular DoS attack. The stealth DoS attack, on the other
hand, corresponds to cases where b is small and legitimate
service can still be guaranteed despite the attack. Under S.1
we have

Λb = ∩φ∈Π2
Λφ

b .

Example 1: Consider a system comprised of two legitimate
streams, one malicious stream with b ≡ b1 = 1 and two
servers with µ1 = µ2 = 1. We have no routing constraints,
i.e. S1 = S2 = Q1 = {1, 2}. Note, that in the absence of the
malicious intruder (b = 0), the guaranteed throughput region
Λ0 is the triangle defined by the origin and points (0, 2), (2, 0)
and it is equal to the stability region of the bipartite routing,
see for example [26]. Then, for b = 1, pick a simple malicious
policy φ̄ with (φ̄11, φ̄12) = (b, 0). Λφ̄

1 is given by points
satisfying a1 + a2 ≤ 1 since a good legitimate policy will
route all legitimate traffic to server 2, and completely avoid
server 1. Figure 3 depicts the reduction of the stability region
due to the attack with policy φ̄. To derive the guaranteed
throughput region we need to repeat this procedure for every

malicious policy in set Π2 and find the intersection of these
regions, which in general is a very difficult task. For this reason
we provide below a result that characterizes the guaranteed
throughput region without examining all possible malicious
policies.

III. GUARANTEED THROUGHPUT - STATIC ATTACKS

In this section we present necessary and sufficient conditions
that determine the guaranteed throughput region Λb for the
case of static malicious routing.

A. Stability Region Λφ
b in Deparametrized Form

First, we fix a malicious policy φ and study the stability
region under this policy. Define

rn(φ) ,

(
µn −

∑
m∈M

φmn

)+

, (1)

to be the available resource of server n after the traffic arriving
from malicious streams under φ is subtracted. We use (.)+ ≡
max{., 0}. Combining the definitions 1-3, we conclude that
the system is stable if and only if there exists a legitimate
policy f such that∑

l∈L

fln ≤ rn(φ), for all n ∈ N . (2)

The above inequalities express the stability region Λφ
b using

flow variables f . Next we develop a methodology for express-
ing the stability region Λφ

b in terms of traffic intensities a,b
and service rates µ.

In the special case where b = 0, our problem reduces
to bipartite routing, whose stability region can be expressed
in terms of arrivals and departures only, by means of the
inequalities called cut constraints [12]–[14], [27]. In case the
attack has b > 0 but the attack policy φ is fixed, we may
obtain the corresponding cut constraints by replacing server n
capacity with the remaining resource rn(φ). Next, we perform
this derivation.

First, let us define some useful notions. For an arbitrary
non-empty subset of the servers N̂ ⊆ N consider the induced
subsets L̂,M̂,2 where
• L̂ =

{
l ∈ L : Sl ⊆ N̂

}
is the set of legitimate traffic

streams that must direct all traffic to some of the servers
in N̂ and

• M̂ =
{
m ∈M : Qm ∩ N̂ 6= ∅

}
is the set of fake traffic

streams that can direct fake traffic to some of the servers
in N̂ .

Sets L̂,M̂ are depicted in Figure 4 for a specific example of
N̂ . The following is a variation of Theorem 3.1 in [14].

Lemma 1 (Stability Region Λφ
b via cut constraints). The traffic

intensities a are sustainable under φ, and we write a ∈ Λφ
b ,

if and only if∑
l∈L̂

al ≤
∑
n∈N̂

rn(φ), for all N̂ ⊆ N .

B. Guaranteed Throughput Region Λb

In this subsection we present necessary and sufficient con-
ditions for the guaranteed throughput region. We will need an

2To avoid clutter we omit N̂ from L̂(N̂ ),M̂(N̂ ).
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Fig. 4. An example system, a chosen subset N̂ = {1, 2} and the
corresponding network where the maximum s-t flow Mmax(N̂ ) is calculated.

auxiliary network G(N̂ ) = (V, E). Define the set of nodes as
V , {s, t, (ui)i∈M̂, (vj)j∈N̂ }, where s is the source node, t
is the sink, node ui represents the element i of M̂, and node
vj represents the element j of N̂ . The set of links consists of
three disjoint subsets E = Eb ∪ EQ ∪ Eµ, where each subset
contains the following directional links

Eb , {(s, ui) : i ∈ M̂},
EQ , {(ui, vj) : i ∈ M̂, j ∈ Qi},
Eµ , {(vj , t) : j ∈ N̂}.

A link of type (s, ui) has capacity bi, a link of type (vi, t) has
capacity µi, while all links in subset EQ have infinite capacity.
An illustrative example of the auxiliary network G(N̂ ) is given
in Figure 4. Let Mmax(N̂ ) denote the maximum s-t flow of
network G(N̂ ).

Using this auxiliary network we may now express the total
remaining resource of a subset of servers after the worst attack
is subtracted:

Lemma 2. Consider a subset of servers N̂ ⊆ N . The
minimum remaining resource of this subset under any static
attack is

min
φ∈Π2

∑
n∈N̂

rn(φ) =
∑
n∈N̂

µn −Mmax(N̂ )

where Mmax(N̂ ) is the maximum s-t flow of network G(N̂ ).

An attack that minimizes the remaining resource of a subset
is called a max-flow attack for this subset. Intuitively, to
guarantee sustainability of an arrival vector we must make
sure that we can withstand any max-flow attack.

Theorem 1. (Guaranteed Throughput Region) The guaranteed
throughput region is the set of all a satisfying∑

l∈L̂

al ≤ min
φ∈Π2

∑
n∈N̂

rn(φ), for all N̂ ⊆ N . (3)

The proofs of lemmas and theorems are in the Appendix.
We conclude the following for static malicious attacks:
• The impact of the worst possible attack on every subset
N̂ is equal to Mmax(N̂ ) ≤

∑
m∈M̂ bm.

• When Qm = N (no routing constraints for the malicious
system), the total impact of the attack becomes equal to
min{

∑
m∈M̂ bm,

∑
n∈N̂ µn}.

• If a part of the system servers can be protected from the
intruder, i.e. sever some links so that Qm ⊂ N , then the
benefit of this protection can be evaluated using (3).

IV. GUARANTEED THROUGHPUT - DYNAMIC ATTACKS

In this section, we relax the assumption of static attack
allowing the malicious controller to dynamically route the
fake traffic. This has a severe impact on the legitimate system,
which is characterized by the main result of subsection IV-D.
In this section we (A) redefine the model to capture the
dynamics, (B) introduce the notion of the dominated server,
(C) define the optimal attacking policy DaR that periodically
attacks the dominated servers and use it to (D) derive the
guaranteed throughput region.

A. System Model for Dynamic Policies

The arriving legitimate traffic al at time t, is routed accord-
ing to routing coefficients fπln(t) determined by the legitimate
policy π. Similarly, the fake traffic bm is routed according to
the coefficients φσmn(t) determined by the malicious policy σ.
We will denote with Πt

1,Π
t
2 the corresponding set of policies

to emphasize the time-varying aspect.
On server n there are two queues with backlogs denoted

with XL
n (t) and XM

n (t), the first holding legitimate traffic and
the second fake. In practice the servers only recognize the sum
Xn(t) = XL

n (t) +XM
n (t). For modeling purposes we assume

that the servers employ the Processor Sharing discipline in
the following sense: at time t, a server with total service rate
µn serves legitimate traffic with rate µLn(t) =

XL
n (t)

Xn(t)µn and

fake traffic with rate µMn (t) =
XM

n (t)
Xn(t) µn, or zero if Xn(t) =

0. This model is known in the Queueing literature as Head-
of-the-Line Proportional Processor Sharing (HLPPS) [4]. We
choose this discipline because the service does not depend on
the packet arrival order, which facilitates analysis. In section
IV-E we experiment via simulations with the First-Come-First-
Serve (FCFS) discipline and verify that the system behavior
is qualitatively the same under the two models.

We also make the following assumptions regarding the
available information to the two controllers:
D.1 The legitimate controller learns the total backlogs Xn(t)

at the end of the slot t.
D.2 The malicious controller learns the individual backlogs

XL
n (t), XM

n (t) at the end of the slot t.
Since legitimate systems are often not designed to keep track
of sent packets, D.1 is a standard feedback assumption. D.2
models the common situation where the malicious intruder is
a single powerful entity, with extra access to information of
queued fake jobs XM

n (t), and by combining with available
feedback Xn(t) can obtain XL

n (t).
We redefine stability for this model as follows:

Definition 6. (System Stability for the Dynamic Model) Server
n is stable if there exists a constant D <∞ such that

lim sup
t→∞

XL
n (t) < D, (4)
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The system is stable if all servers are stable.

Note that in contrast to definition 3 we need not deal
explicitly with the case where server n is not used by the
legitimate system, since if this was the case we immediately
have lim supt→∞XL

n (t) = 0.
We naturally extend the definitions of stability region and

guaranteed throughput region using the enriched sets of poli-
cies and the new stability criterion.

B. Dominated Servers

We introduce the notion of the Dominated server, which
will play a key role in determining the guaranteed throughput
region.

Definition 7. (Dominated server) A server n ∈ N is called
dominated if there exists a static malicious routing φ ∈ Π2

such that ∑
m∈M

φmn − µn > 0. (5)

In words, a server is called dominated if it is possible for
some static attack to overload it with fake jobs. Let Nd ⊆ N
be the set of all dominated servers and Nf , N −Nd the set
of all free (non-dominated) servers. Note that the sets Nd,Nf
are determined once µ,b and Qm are given and do not depend
on the choice of policies from either controller.

From (5) it follows directly that the backlog of a dominated
server n will grow at a positive rate ρn ,

∑
m∈M φ∗mn(n)−

µn > 0 if the malicious routing φ(t) is assigned the value of
the maximizer of the left term in (5), denoted here φ∗(n). The
actual rate of increase might be larger if legitimate traffic is
also added. The key observation here is that: for any dominated
server n, the malicious controller can impose an instantaneous
total backlog increase of rate at least ρn by targeting this
server with all possible fake traffic.

C. The DaR Malicious Policy

Next, we define the “Dominate and Release” (DaR) policy.
The policy operates in periods, where period i has duration τi,
which is a parameter chosen by the policy. Each period has two
phases. In the Dominate phase, the policy targets one by one
all dominated servers causing their backlogs to increase. The
time spent on jth dominated server tji is designed so that at the
end of Dominate phase all dominated servers have backlogs
greater than a parameter Bi. The entire phase lasts for di:

di =

|Nd|∑
j=1

tji .

In the Release phase, the policy performs a static routing
directed only to free servers for duration ri.

Dominate and Release (DaR) Policy

Fix an order of the dominated servers (1, . . . , J), J , |Nd|.
The Dominate phase is composed of J intervals, where in

interval j the fake traffic is targeted to jth dominated server.
The duration of jth interval tji is chosen according to the
recursive expression

tji =
tj−1
i ρj−1

ρmax + µmax
, (6)

X̂1(t)

X̂2(t)

t1i t2i ri
Bi

Phase 1 Phase 2

Fig. 5. Lower bounds for backlog evolution of the dominated servers X̂1(t)
and X̂2(t) during a period τi of DaR policy operation. The bounds are tight if
we assume that the dominated servers start empty and no legitimate traffic is
sent to them. The first phase lasts for t1i +t2i time, whereby the two servers are
targeted one-by-one. At the end of the first phase, both have a backlog larger
than Bi. Then in the second phase of duration ri the malicious controller
attacks the free servers (their backlogs are not shown in the Figure).

where ρmax = maxj∈Nd
ρj and µmax = maxj∈Nd

µj .
In the Release phase the fake traffic is directed to the

free servers according to a static routing φf ∈ Π2, which
is customizable. This phase lasts for ri = Bi/µmax, where
µmax is the maximum server capacity and Bi , tJi ρJ is the
draining time of the J th dominated server.

The choice of (6) guarantees that at the end of the entire
ith dominate phase (denoted with tiend) all dominated servers
satisfy

Xn(tiend) ≥ Bi = tJi ρJ ,

where Bi corresponds to a backlog level, see Fig. 5. Intuitively,
tj−1
i ρj−1 is the “charge” of dominated server j − 1, and it

must be equal to the charge of the next server j plus a term
tjiµmax, which accounts for draining (discharging) of server
j− 1 at maximum rate while j is charging. Then both servers
j−1, j remain charged roughly at the same level. By repeating
this trend we have that at the end of the dominate phase all
dominated servers are charged with fake traffic.

Next we show, that due to the policy design, all parameters
t1i , Bi, di, ri in period i are linear functions of τi, and hence
can be controlled. Our main result in subsection IV-D will be
based on the fact that we can choose an increasing sequence
τi, i = 1, 2, . . . so that Bi is also an increasing sequence.

Lemma 3. (Parameter dependence on τi) Consider a DaR
attack policy and suppose Nd 6= ∅, then the following
quantities are proportional to τi:
(a) the first interval of the dominate phase t1i ,
(b) the uniform lower bound of dominated server backlogs

at the end of the dominate phase Bi, and
(c) the duration of the release phase ri.

In particular
t1i = C1τi, Bi = C2τi, ri = C3τi.

where C1 = 1
c1+c2

, C2 = µmaxc2
c1+c2

, C3 = c2
c1+c2

, and

c1 , 1 +
∑J
j=2

∏j−1
k=1 ρk

(ρmax+µmax)j−1 , c2 ,
∏J

k=1 ρk
(ρmax+µmax)J−1µmax

.

Since the dominated servers all become loaded at the end of
the dominate phase with Bi = C2τi, the legitimate scheduler
should avoid sending traffic to them during the release phase.
The following Lemma provides a bound on the legitimate
traffic that can be routed to the dominated servers under a
DaR attack without causing a legitimate buffer overflow.
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Lemma 4. (Maximum legitimate traffic in dominated servers)
Consider a DaR attack policy with release phase routing φf

and suppose Nd 6= ∅. Then there exists an interval of duration
ξ(τi) starting at the beginning of the release phase of the ith

period, such that if the total amount of legitimate traffic routed
to the dominated servers during this interval is

A(Nd) ≥ 2|Nd|D,

then the legitimate backlogs of the dominated servers will
overflow D, where D is the stability threshold in (4). More-
over, ξ(τi) is linear to τi and independent of the order of
dominated servers 1, . . . , J :

ξ(τi) =
C∗2

2µmax
τi,

where C∗2 is the minimum C2 (defined in Lemma 3) over all
possible orderings.

Lemma 4 implies that there exists an interval of length ξ
in the release phase whereby the majority of legitimate traffic
must be routed to the non-dominated servers. Combining this
with an appropriate choice of φf , it can be shown that DaR
is an optimal dynamic attack. In what follows, we use DaR
to characterize the guaranteed region in the case of dynamic
malicious policies.

D. Guaranteed Throughput Region - Dynamic Case

Theorem 2. (Guaranteed throughput region under dynamic
malicious policies) The guaranteed throughput region Λdyn

b is
given by all vectors a for which the following conditions are
satisfied∑

l∈L̂

al ≤ min
φ∈Π2

∑
n∈N̂\Nd

rn(φ), for all N̂ ⊆ N . (7)

Note the difference from Theorem 1, i.e. the service from
dominated servers N̂ ∩ Nd is not counted as remaining
resource when considering subset N̂ . We reach the following
concluding remarks:

• In a dynamic attack the servers with individual capacity
less than the attack intensity become neutralized.

• Since an attacker can time-share between dynamic and
static attacks, it may reach any intermediate performance
degradation rate it wishes. If we make a crude assumption
that an attack is detectable if more than a fraction of the
system capacity is lost, then the attacker can incur the
maximum possible damage subject to being undetectable,
while using only a relatively small attack intensity (yet
larger than individual server capacity).

• Consider the case of a system with a very large number of
servers each with small capacity, i.e., each server can be
a virtual machine. Then the attacker can destabilize this
system with a very small attack intensity. In particular, it
can control exactly the volume of the inflicted damage.

• A defense mechanism is to use load migration. In such a
case the effect of dynamic attacks is mitigated since the
resource becomes flexible, and equivalently unified in one
virtual server with capacity equal to the sum capacities
of individual servers.

Leg. policy: JSQ

Time

Leg. policy: ALT

Time

Fig. 6. Malicious policy: DaR with τi = 2i. Aggregate backlogs for
legitimate (red) and total (black).

E. Model Validation via Simulations

In this section we present simulations for a system with
random arrivals and service times, and First-Come-First-Serve
(FCFS) discipline in order to demonstrate that the presented
results are not an artifact of our traffic model, nor of our
HLPPS assumption.

1) Setup

We study a simple example with two servers of unit rate,
one legitimate stream with a = 0.3 and S = {1, 2} and one
malicious stream with b = 1.3 and Q = {1, 2}.

We use a custom built, event-driven simulator. Time is
continuous. We use Poisson arrivals to generate jobs and FCFS
queues at the servers. The duration of each job (legitimate and
fake alike) is determined by an exponential random variable
with unit mean.

Since all servers are dominated, the malicious controller
is using DaR with no release phase, i.e., it simply alternates
traffic between the two servers. For the interval lengths t1i , t

2
i

we use function 2i. The legitimate controller uses either JSQ
or a different policy which directs all traffic to the server that
the malicious is not targeting. We call this policy Alternate
(ALT).

Using intuition from Theorem 2 we expect the system to
be unstable for any positive arrival rate. Additionally, it is
of interest to compare the performance of the two legitimate
policies.

2) Experiments

In Figure 6, we test DaR vs JSQ (left) and ALT (right). We
verify that the system is unstable, since the legitimate backlogs
(red) grow with time. This is an indication that our results also
hold true for random arrivals and FCFS server scheduling.
Then, observe that JSQ outperforms ALT, i.e. the legitimate
backlogs are smaller under JSQ. Note that the maximum of
legitimate backlogs on each interval increases linearly with
time. We have that τi = Θ(2i) and t ∼

∑i
k=1 2k = Θ(2i),

which explains the linear relationship between Bi and t.

V. PERFORMANCE OF SPECIFIC POLICIES

In this section we study how specific legitimate and mali-
cious policies interact.

A. Dynamic Legitimate - Static Malicious

A first order optimality criterion for a static malicious policy
is for φ ∈ Π2 to correspond to a max-flow achieving superflow
on the network G(N̂ ) (see proof of Lemma 4). A second order
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criterion is to choose φ so that a /∈ Λφ
b . If a is not known to

the attacker, then a plausible strategy is to solve
min
φ∈Π2

Vol(Λφ
b)

where Vol is the volume of the set. This attempts to minimize
the volume of the stability region Λφ

b .
For the legitimate policy, it is sufficient to statically balance

the traffic on the remaining resource vector (rn). If φ,a are
known, this can be done in an offline fashion using iterative
water filling algorithms. Additionally, it can be done in an
online fashion agnostically to φ,a using a dynamic legitimate
policy which we define below.

Definition 8. (Join-the-Shortest Queue (JSQ) policy) At any
time t, let n?l = arg minn∈Sl{Xn(t)}, l ∈ L, ties broken
arbitrarily. JSQ policy selects

f JSQ
ln (t) =

{
al if n = n?l ,
0 otherwise.

In words, the JSQ policy routes the traffic to the less loaded
server. JSQ is known to achieve throughput optimality in the
bipartite routing problem [7], in the absence of the malicious
attacker. Also, it is known to have good load balancing
properties [15], [19]. From [26] we have the following result.

Theorem 3. (JSQ Optimality under static malicious policies)
For each static malicious policy φ, the JSQ policy stabilizes
the system for all arrival rates a in the sustainable region Λφ

b .

The above implies that JSQ also achieves the guaranteed
throughput region. However, the result is stronger in the
following sense. If a suboptimal malicious policy φ is chosen
so that Λφ

b ⊃ Λb, then JSQ can improve the performance
even further than the guaranteed throughput region. Formally,
we say that JSQ is maximally stable, i.e., it is stable for all
a,φ which are stabilizable. Thus, for a static attack, JSQ is
always a desirable choice for the legitimate controller, since
it is maximally stable and it operates agnostically to arrivals
and malicious policy selection. Next we show that JSQ is not
maximally stable against dynamic attacks.

B. Dynamic Legitimate - Dynamic Malicious

In this subsection we consider a specific dynamic malicious
policy called Join-the-Longest Legitimate Queue (JLLQ).

Definition 9. (Join-the-Longest Legitimate Queue-JLLQ) At
any time t, let

n?m = arg max
n∈Qm

{XL
n (t)},m ∈M,

ties broken arbitrarily. JLLQ policy selects

φJLLQ
mn (t) =

{
bm if n = n?m,
0 otherwise.

This policy is supported by the intuition that it targets the
most loaded server considering only legitimate traffic. This
way, it avoids overloading a server with no legitimate traffic,
which from the point of view of the malicious controller is
not beneficial. The use of JLLQ is motivated in cases where
the optimal τi-DaR policy is either technologically infeasible
or not desirable due to possible detection.

We show by examples and simulations that JLLQ has indeed
a desirable property; conditionally on JSQ being the legitimate

2

3

legitimate malicious

a2

b1=2

μ1=3

a1

1

μ2=3

μ3=3 0

0,1

4,0 a1

a2 stable
unstable

JSQ vs JLLQ 

Fig. 7. (left) The system for Examples 3 and 4. (right) The guaranteed
throughput region is depicted along with simulation experiments for chosen
policies π=JSQ, φ=JLLQ. For the simulations we use ◦ for unstable points
and × for stable points.

policy, it destabilizes the system whenever the legitimate traffic
intensity vector lies outside the guaranteed throughput region
for static policies Λsta

b . Arguably, this is a modest objective for
the malicious controller, since the manipulation of dominated
servers is conceded. However, even achieving this modest
objective is not obvious when the arrival settings and the
legitimate policy are not known and a τi-DaR-like policy is
not available, or server capacities are larger than the attack
resources.

Conjecture 1. (JLLQ vs JSQ) If π = JSQ and σ = JLLQ,
then the system is unstable iff

a /∈ Λsta
b .

In words, if JSQ is in use, JLLQ destabilizes the system
as long as the legitimate intensities lie outside the guaranteed
throughput region for static malicious policies. To support the
conjecture, we perform extensive simulations and present some
in the following example.
Example 3 (JLLQ vs JSQ): Consider the example of Figure
7. Three servers with service rate 3 are fed by two legitimate
and one malicious stream. The malicious stream can reach
two servers (Q = {2, 3}), while legitimate streams can reach
S1 = {1, 2},S2 = {3} correspondingly. First, we use Theorem
1 to calculate the guaranteed throughput region under static
policies Λsta

b . Note that due to b < µn for all n, we have
Λsta
b = Λdyn

b . The region is characterized by (a1, a2) ≥ (0, 0),
a1 ≤ 4 and a2 ≤ 1.

Next, we simulate the system for t = 10000, using JSQ for
the legitimate controller and JLLQ for the malicious controller,
examining different traffic intensity points. For each point, we
consider the system to be stable if the average legitimate load
of each server is less than 100 and use an x marker to denote it
in the Figure. We use a ◦ marker if the system overcomes this
threshold, in which case the system is considered unstable.

As observed by the comparison of simulations (markers) and
the guaranteed regions (solid lines), whenever the legitimate
traffic intensity vector lies inside the guaranteed throughput
region, stability is achieved, i.e., JSQ achieves the guaranteed
throughput region versus JLLQ. Additionally, whenever the
vector lies outside the region, the system is unstable, which
implies that JLLQ achieves the objective of destabilizing the
system when outside the guaranteed throughput region for the
static policies. Thus, the experimental observations support the
conjecture.

Two questions remain: Is it true that ΛJLLQ
b = Λsta

b ? Is JSQ
maximally stable? The answer is no to both questions given
by the following example.
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Example 4 (Tricking JLLQ): Consider again the setting of
the previous example. Define the following legitimate policy:

Definition 10. (Enhanced JSQ) At time t, the Enhanced JSQ
policy, assigns the job of stream l to a server according to the
following algorithm:

1) If l = 1 compare X3(t) > 1
2X2(t)

• If true, then assign the job to server 2
• else, assign the job to server arg minn∈S1{Xn(t)}

2) If l = 2 assign the job to server 3.

The enhanced JSQ policy extends the classical JSQ by
adding a condition; whenever X3(t) grows so that X3(t) >
1
2X2(t), the JSQ policy is overriden and arrivals from legit-
imate stream 1 are routed to server 2. This way, server 2
backlog grows faster than server’s 3. Thus, JLLQ is lured to
route more traffic to server 2.

By simulations, we find that the point (3,1.2), which lies
outside the guaranteed throughput region Λsta

b , is stable when
we use Enhanced JSQ vs JLLQ.

We conclude that JLLQ constrains the system to Λsta
b if

operated vs JSQ, but cannot guarantee this performance vs
any legitimate policy. Moreover, JSQ is not maximally stable
since it performs strictly worse in comparison to other policies.
Nevertheless, from simulations it appears that JSQ indeed
achieves the guaranteed throughput region in all cases, i.e.,
it is the optimal defense versus an optimal attack.

Here, we should comment that the superiority of Enhanced
JSQ to plain JSQ is symptomatic and related to fixing the
JLLQ as the attacking policy. If a different attacking policy is
used, the performance of Enhanced JSQ may be worse than
JSQ. The interplay between the used policies gives rise to
a game theoretic modeling of the problem, which is left for
future work. We note that this direction is related to dynamic
stochastic games. For example see [3] that analyzes dynamic
games in the case of (i) adversary service, and (ii) individual
user performance optimization.

VI. CONCLUSION

We derived necessary and sufficient conditions for the
guaranteed throughput region for a system under a stealth
DoS attack. This provides intuition as to how the network
can be better designed to minimize the effect of these attacks.
In case where the malicious controller uses a simple static
routing policy, JSQ is proven to be a desirable defense policy.
We show that the damage can be severe if the malicious
controller performs non-stationary dynamic routing. Moreover,
we exemplify the interaction between JSQ and JLLQ policies.
It is found by simulations that JSQ is not a maximally stable
policy in the sense that depending on the attacking policy it
can be strictly outperformed by other legitimate policies.

The practical conclusions of this work are: (i) the impact of
the attacks can be estimated using graph theoretic techniques
(max-flow in the auxiliary network), (ii) pooling the resources
allows load balancing and protects the system from attacks,
(iii) in the dynamic setting, resource pooling can be effectively
achieved by migrating load dynamically in order to prevent the
servers from becoming dominated.
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APPENDIX A
PROOF OF THEOREM 1

First we provide the proof of Lemma 2.
Proof of Lemma 2: Fix a malicious policy φ ∈ Π2 and
consider the corresponding induced superflow on network
G(N̂ ); on a link (um, vn) set the flow to φmn and assume
that flow conservation is satisfied at all nodes of G(N̂ ). The
capacity constraints are clearly satisfied on infinite capacity
links (um, vn), and additionally satisfied on links (s, um),
since

∑
n∈N̂ φmn ≤ bm. We call it a superflow since the

capacity constraint might be violated on links (vn, t), i.e. we
might have

∑
m φmn > µn for some n. The throughput of the

superflow induced by policy φ is
∑
n∈N̂ min{µn,

∑
m φmn}

and the maximum achievable throughput by all superflows is
equal to the maximum flow:

Mmax(N̂ ) = max
φ∈Π2

∑
n∈N̂

min{µn,
∑
m

φmn}

= max
φ∈Π2

∑
n∈N̂

µn −

(
µn −

∑
m

φmn

)+


= max
φ∈Π2

∑
n∈N̂

µn − rn(φ)


=
∑
n∈N̂

µn − min
φ∈Π2

∑
n∈N̂

rn(φ).

Proof of Theorem 1 (Necessity): In particular, we will show
that if one of the conditions does not hold, then the system
is unstable. Note that if for some subset N̂ we have L̂ = ∅,
then the LHS of (3) is zero and the condition is automatically
satisfied for this subset. This is because

∑
n∈N̂ µn is an s-t cut

of network G(N̂ ) and thus larger or equal to the maximum s-t
flow Mmax(N̂ ). Hence by Lemma 2, the RHS is nonnegative.

Next, pick a subset N̂ with |L̂| > 0 and let∑
l∈L̂

al > min
φ∈Π2

∑
n∈N̂

rn(φ). (8)

Let φ? be the minimizer of the RHS of (8), it follows∑
l∈L̂

al >
∑
n∈N̂

rn(φ?).

and thus by Lemma 1 the system is unstable.
Proof of Theorem 1 (Sufficiency): Fix any malicious policy
φ̄ ∈ Π2. We have for any N̂

min
φ∈Π2

∑
n∈N̂

rn(φ) ≤
∑
n∈N̂

rn(φ̄).

Thus, our conditions imply∑
l∈L̂

al ≤
∑
n∈N̂

rn(φ̄), for all N̂

which by Lemma 1 is sufficient for stability.

APPENDIX B
PROOF OF LEMMAS 3 AND 4

Proof of Lemma 3: We express the parameters tji , di, ri in
terms of of t1i first, and then yield the expression of t1i in terms

of τi. First, we can express the duration of the interval j as a
function of the duration of the first interval using (6):

tji =

∏j−1
k=1 ρk

(ρmax + µmax)
j−1

t1i . (9)

It follows that the duration of the total ith dominate phase
is given by

di = c1t
1
i ,

where c1 , 1 +
∑J
j=2

∏j−1
k=1 ρk

(ρmax+µmax)j−1 . The duration of the ith

release phase is given by

ri =
Bi
µmax

=
tJi ρJ
µmax

= c2t
1
i , (10)

where c2 ,
∏J

k=1 ρk
(ρmax+µmax)J−1µmax

.
Since it must be τi = di + ri, we have

t1i = τi

(
1

c1 + c2

)
, (11)

where c1 and c2 are positive constants given above. Note
that these constants depend on the chosen order of dominated
servers. Concluding, (a) is obtained directly from (11), (b) is
obtained by noticing that from (10) we have Bi = c2µmax,
and (c) is obtained from ri = Bi/µmax.
Proof of Lemma 4: Pick an interval of duration ξ(τi) within
the period i, such that its starting time instance coincides with
the end of the ith dominate phase/beginning of the ith release
phase, denoted with tiend. Since ξ(τi) overlaps with the release
phase, a constraint we must always satisfy is that ξ(τi) ≤ ri
which is equivalent to

τi ≥
ξ(τi)

C3
=
µmaxξ(τi)

C2
. (12)

Also, we want to impose an additional constraint, such that at
the end of the interval ξ(τi) all servers have total backlog at
least as large as Bi/2. Since at the beginning of the interval
ξ(τi) all backlogs are at least Bi, it is sufficient to choose
µmaxξ(τi) ≤ Bi/2, where µmax is an upper bound on the
faster draining rate across all servers. This can be achieved by
ensuring

τi =
Bi
C2
≥ 2µmaxξ(τi)

C2
. (13)

It is enough to consider only constraint (13) since if (13) is
satisfied then so is (12).

Now, assume that during the whole ξ(τi) interval the
legitimate backlogs are always smaller than D, i.e. XL

n (t) < D
for all n ∈ Nd and t in the interval [tiend, t

i
end + ξ(τi)]. We

deduce that the maximum service rate for the legitimate traffic
in all dominated servers can be bounded within the interval
ξ(τi) as follows∑

n∈Nd

µLn(t) =
∑
n∈Nd

XL
n (t)

Xn(t)
µn

(13)

≤
∑
n∈Nd

XL
n (t)

Bi/2
µn

<
∑
n∈Nd

D

Bi/2
µmax =

|Nd|D
Bi/2

µmax

=
2|Nd|µmax

C2τi
D, ∀ t ∈ [tiend, t

i
end + ξ(τi)].
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Let A(Nd) be the total legitimate traffic routed to the domi-
nated servers within the interval ξ(τi). We conclude that the
legitimate backlogs at the end of the interval are∑

n∈Nd

XL
n (tiend + ξ(τi)) > A(Nd)− ξ(τi)

2|Nd|µmax

C2τi
D

(13)

≥ A(Nd)− |Nd|D. (14)
Combining (14) with XL

n (t) < D, we conclude A(Nd) <
2|Nd|D.

To prove independence from ordering, observe that to satisfy
(12)-(13) it is sufficient to choose ξ(τi) = C2

2µmax
τi, where

C2 depends on the order of dominated servers considered.
Let C∗2 > 0 be the minimum C2 over all the possible
orderings (they are finitely many). Then a global selection
ξ(τi) =

C∗
2

2µmax
τi satisfies (13)-(12) for all orderings while at

the same time ξ(τi) is proportional to τi.

APPENDIX C
PROOF OF THEOREM 2

Proof of Theorem 2 (Necessity): We will show the necessity
of the conditions by showing that for any arrival vector such
that for some subset N̂ the inequality in (7) is violated, the
malicious controller can use a DaR policy with a φf that
depends on the subset N̂ to cause the legitimate backlog to
overflow D on some server.

First, observe that for Nd = ∅, the conditions reduce to
Theorem 1 and the DaR policy reduces to a static attack. We
can follow the same methodology with the proof of Theorem
1 to show the necessity. Thus, below we deal with the case
Nd 6= ∅.

Fix a subset of server N̂ , such that inequality (7) is not
satisfied, i.e. it is∑

l∈L̂

al > min
φ∈Π2

∑
n∈N̂\Nd

rn(φ). (15)

It follows that there exists a static malicious routing φ? and
a positive ε such that∑

n∈N̂\Nd

rn(φ?) =
∑
l∈L̂

al − ε. (16)

Next we choose a DaR with φf = φ?. Since the free (non-
dominated) servers have strictly positive remaining resource
for any static attack policy, it is also∑

m

φ?mn ≤ µn, for all n ∈ N̂ \ Nd, (17)

thus combining with (16) we get∑
l∈L̂

al +
∑

n∈N̂\Nd

[∑
m

φ?mn − µn

]
= ε. (18)

Pick any arbitrary finite D, focus on the time interval Ii ,
[tiend, t

i
end +ξ(τi)] where ξ(τi) is chosen to be a linear function

of τi as in Lemma 4, and we will choose τi later. By definition
of L̂, the total legitimate traffic generated during Ii that must
be routed to N̂ is exactly A(N̂ ) = ξ(τi)

∑
l∈L̂ al. If there

are no free servers, then the instability is readily obtained by
picking a large ξ(τi) that exceeds the condition of Lemma 4.
Thus in the remaining we consider only the case Nf ⊃ ∅. We
assume supt∈Ii X

L
n (t) < D for all n, t and provide the proof

by contradiction.

By Lemma 4, some of the dominated servers N̂ ∩ Nd will
overflow D if within Ii we have A(Nd) ≥ 2|Nd|D, in which
case we reach a contradiction by the overflow of a dominated
server. Therefore, we continue assuming otherwise, and the
total legitimate traffic that is routed to free servers N̂ \ Nd
during the same interval is

A(N̂ \ Nd) ≥ ξ(τi)
∑
l∈L̂

al − 2|Nd|D. (19)

Considering the total backlog evolution in Ii, we get a lower
bound on the sum of total backlog of free servers at the end
of the interval using (18)-(19)∑
n∈N̂\Nd

Xn(tiend + ξ(τi))

≥ A(N̂ \ Nd) + ξ(τi)
∑

n∈N̂\Nd

∑
m

φfmn − ξ(τi)
∑

n∈N̂\Nd

µn

(19)

≥ ξ(τi)

∑
l∈L̂

al +
∑

n∈N̂\Nd

[
∑
m

φfmn − µn]

− 2|Nd|D

(18)
= ξ(τi)ε− 2|Nd|D.

By the pigeonhole principle this implies a lower bound on
the most loaded free server’s total backlog at the end of the
interval Ii

max
n∈N̂\Nd

Xn(tiend + ξ(τi)) ≥
εξ(τi)

|N̂ \ Nd|
− 2|Nd|D, (20)

which can be summarized in the asymptotic statement
XM
n̄ (tiend + ξ(τi)) ∈ Ω(τi), for n̄ maximizer of (20). (21)

By the assumption XL
n (t) < D, we also obtain a lower

bound on the malicious service rate for all servers n

µMn (t) =
XM
n (t)

XL
n (t) +XM

n (t)
µn ≥ µn −

Dµn
Xn(t)

, ∀n, t ∈ Ii
(22)

In the remaining of the proof focus on a free server that
maximizes (20), denoted with n̄. Choose

t0 = inf{τ ∈ Ii : XM
n̄ (t) > 0, ∀t > τ, t ∈ Ii},

where by convention we set t0 = tiend + ξ(τi) if XM
n̄ (tiend +

ξ(τi)) = 0. If t0 = tiend + ξ(τi), then (20) is contradicted for
any ξ(τi) large enough to make the RHS positive. Else for
t ∈ [t0, t

i
end + ξ(τi)), since XM

n (t) > 0 the malicious backlog
of server n is governed by the following differential equation

ẊM
n (t) =

∑
m

φfmn − µMn (t), t ∈ [t0, t
i
end + ξ(τi)]

Combining with (22), taking into account Xn(t) ≥ XM
n (t) >

0 we have

ẊM
n (t) ≤

∑
m

φfmn − µn +
Dµn
Xn(t)

≤ Dµn
XM
n (t)

,

t ∈ [t0, t
i
end + ξ(τi)] (23)

where in the last inequality we used (17) and Xn(t) ≥ XM
n (t).

Using separation of variables and positivity of XM
n (t), we

solve the differential inequality ẊM
n (t)XM

n (t) ≤ Dµn in the
interval [t0, t

i
end + ξ(τi)] and obtain an upper bound for the

malicious backlog
XM
n (tiend + ξ(τi)) ∈ O(

√
τi)

which contradicts the law XM
n (tiend + ξ(τi)) ∈ Ω(τi) obtained

above in (21). This in turn completes the contradiction since
we can choose τi arbitrarily large.
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Proof of Theorem 2 (Sufficiency): To show the sufficiency
of the conditions, we will provide a legitimate policy which
uses only the free servers and stabilizes the system whenever
the arrival vector a satisfies the necessary conditions.

Assume a vector a that satisfies the conditions and consider
a legitimate policy which at time t inspects the malicious
decisions φσmn(t) and calculates the legitimate decisions fπln(t)
so the following holds for all t∑

l∈L

fπln(t) +
∑
m∈M

φσmn(t) ≤ µn, for all n ∈ Nf (24)

and fπln(t) = 0, for all n ∈ Nd.
To see why π exists, note first that by definition all free

servers satisfy∑
m∈M

φσmn(t) ≤ µn, ∀σ, t, n ∈ Nf
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and thus at each time instance

rn(φσ) =

(
µn −

∑
m∈M

φσmn(t)

)+

= µn −
∑
m∈M

φσmn(t) ≥ 0, ∀n ∈ Nf .

Then, fix t and use the sufficiency of Theorem 1, eq. (3) to
conclude that given φσ , there exist fπln(t) such that (24) holds.
The same is true for any t. Thus, the service rate can always be
made larger or equal to the total arrival rate. Then, stability of
free servers follows by picking a large enough D. Dominated
servers are stable by the definition of the legitimate policy,
which does not route any traffic to them.
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