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Beamforming capacity optimization for MISO
systems with both Mean and Covariance Feedback

Efstathios Vagenas, Georgios S. Paschos and Stavros A. Kotsopoulos

Abstract—The beamforming capacity optimization problem
in MISO systems, when the transmitter has both mean and
covariance feedback of the channel, has been tackled only with
the SNR maximization approach, which is known to give a
sub-optimal solution. Numerical solutions of the full rank input
covariance matrix, presented in the literature, are capable of
tracking the beamforming vector only if it is the optimal capacity
achieving solution. In this paper, we solve the beamforming ca-
pacity optimization problem by following an analytical approach
that projects the beamforming vector on an orthonormal basis
defined by the eigenvectors of the channel covariance matrix.
The proposed formulation reduces the complexity of calculating
the solution and provides intuition into the problem itself. In
particular, we express the necessary conditions for beamforming
capacity maximization as a system of two equations, which can
be solved numerically very efficiently using the secant method.
Surprisingly, our indicative numerical results for the 2 × 1 and
10×1 MISO systems, showed that for some cases the performance
gain through beamforming capacity optimization compared to the
SNR maximization approach can reach 0.4bps/Hz. This means
that the SNR maximization solution deviates considerably from
the optimal beamforming vector. Finally, the optimality of the
SNR maximization solution is also examined.

Index Terms—Beamforming, Capacity, Input optimization,
Rician fading channels.

I. INTRODUCTION

Systems with multiple antennas are known to significantly
increase channel capacity, and thus they represent one of the
most promising solutions for fast and reliable wireless com-
munications [1]. In Multiple-Input Multiple-Output (MIMO)
systems, channel knowledge is substantial for high capacity
[2], [3]. Although the receiver may have perfect channel state
information, realizing such knowledge at the transmitter is, in
most instances of wireless communications, difficult or even
impossible.

Instead of tracking the instantaneous state of the fading
channel, it is more practical for the transmitter to rely on the
statistical knowledge of the channel, [4]. As it was shown in
[5], the optimal input is Gaussian distributed with zero-mean,
while finding its optimal input covariance matrix leads to the
transmitter optimization problem. The optimum covariance
matrix is, in general, a full rank matrix whose eigenvectors
and eigenvalues have to be optimized simultaneously [6]–[9].
Eigenvectors and eigenvalues can only be optimized separately
in the special cases of either mean or covariance channel
knowledge. Such cases were studied in [10]–[17]. However,
as stated in [18], if the channel has to be described by both
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mean and covariance, no closed form solution for capacity
maximization exists even for MISO systems.

Limiting the rank of the input covariance matrix to unity,
leads to the widely known beamforming scenario. Practically,
beamforming is desirable because it reduces system com-
plexity significantly (i.e. low coding effort-cheap transmit-
ters). Beamforming/precoding reduces a MIMO system into a
Single-Input Single-Output (SISO) system, which means that a
scalar codec technology can be used. Moreover, this technique
gives close to optimal results either at low Signal-to-Noise
Ratio (SNR), or at relatively small angular spreads of the
channel (i.e. narrow spatial spread), a situation that typically
occurs in outdoor channels, [19]. The necessary conditions for
the optimality of beamforming were presented in [12], [20],
[21]. The beamforming capacity optimization problem was
solved in [19], [22] for MISO systems with either channel
mean information or channel covariance information at the
transmitter and was further studied in [23] in the context
of wideband OFDM. A generalization of that solution for
MIMO systems was presented in [15]. An interesting study of
the low-SNR scenario can be found in [24] where a closed-
form expression for the optimal beamforming direction was
presented. However, finding the optimal beamforming vector
in channels with both mean and covariance feedback remains
an open problem even for MISO systems.

In this paper, we consider a MISO system which uses
beamforming as its transmit strategy, as in [15], [23], and we
give a solution for the optimal beamforming vector when both
mean and covariance feedback are available at the transmitter
and when both are necessary to describe the channel (Rician
fading channel). Furthermore, the receiver is assumed to have
perfect channel knowledge. The results of [19], [22], [23],
with only mean or covariance knowledge, are special cases of
the beamforming maximization problem and thus are included
in our solution. Although numerical solutions of the full rank
input covariance matrix already exist in literature, they can
not be applied to beamforming optimization because these
algorithms track the beamforming vector only if it is optimal
for capacity maximization. SNR maximization is the only
known sub-optimal solution, [23]. We tackle this problem
by approaching its solution analytically and projecting the
optimal beamforming vector on an orthonormal basis defined
by the eigenvectors of the channel covariance matrix. Fol-
lowing this procedure, first we alleviate the complexity of
the beamforming vector (from the N complex optimization
variables to N real valued variables) and second, we proceed
by reducing the problem from a system of N equations to
a system of 2 equations with 2 variables. The rest N − 2
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variables are calculated by simple substitutions. Although this
system cannot be solved analytically in closed form, it can be
solved efficiently, using the numerical secant method, making
the problem solvable even in real time by devices with limited
processing power. Our results are extended to the special
cases of low and high power, where the equations are further
simplified. This method allows us to examine how well the
SNR maximization solution performs in terms of capacity
and to quantify the tradeoff between the SNR maximization
and capacity maximization solutions. Besides its practical
importance, beamforming capacity optimization is of great
theoretical importance since its solution can potentially point
toward the general solution of the full rank capacity achieving
input covariance matrix in Rician fading channels.

The paper is organized as follows. In Section II, the problem
is formulated and the beamforming vector is analyzed in an
orthonormal basis. In Section III the necessary conditions
for optimality are presented. In Section IV the necessary
conditions are transformed to a system of two equations.
Section V presents numerical results and Section VI concludes
the paper.

II. SYSTEM MODEL

Consider an N×1 MISO system operating over a frequency
non-selective fading channel. The complex baseband represen-
tation of the received signal is given by

y =

√
P

N
hx+ n,

where x is the N × 1 input vector, h is the 1 × N channel
vector, n is the additive white zero-mean complex Gaussian
noise with power σ2

n and P is the total power of a transmitted
signal. In order to achieve capacity, we feed the system with
a complex Gaussian random vector (as in [5]) with covariance
matrix

Q = E
[
xxH

]
,

where E[.] denotes the expectation and .H denotes the Her-
mitian transpose, or the conjugate transpose of the matrix.
Next, assuming that h is perfectly known to the receiver, the
obtained ergodic capacity per bandwidth (in bits/s/Hz) is

C = Eh

[
log2

(
1 +

P

σ2
n

hQhH

)]
,

where the expectation is taken over the channel vector h. The
covariance matrix Q can be decomposed with the help of
eigenanalysis (Schur decomposition) to

Q = UQΛQU
H
Q ,

where UQ is a square matrix of the eigenvectors of Q and
ΛQ is a diagonal matrix of the eigenvalues of Q. If the system
chooses beamforming as the transmit strategy, then Q = vHv,
where v ∈ CN is the 1×N transmit beamforming vector, with
∥v∥ = 1. In this case, the ergodic beamforming capacity has
been derived in [23]

Cbf = Eh

[
log2

(
1 +

P

σ2
n

hvHvhH

)]
= Eh

[
log2

(
1 +

P

σ2
n

∣∣hvH
∣∣2)] . (1)

In the above |.| denotes the modulus and ∥.∥ denotes the
length (or square norm) of the corresponding vector. If each
element of the channel h is described by a complex Gaussian
random variable, then h = µ + hwK

1
2 where µ ∈ CN is

the 1×N channel mean vector, hw is a zero-mean spatially-
white (ZMSW) channel and K is an Hermitian positive
definite N × N covariance matrix. Thus z (v)

.
= hvH =

µvH+hwK
1
2vH is also a complex Gaussian random variable

and hence the modulus |z (v)| is Rice distributed with the
following probability density function

p|z(v)| (x) =
x

σ2
z (v)

I0

(
mz (v)

σ2
z (v)

x

)
e
− x2+m2

z(v)

2σ2
z(v) , x ≥ 0, (2)

where I0 (.) is the modified Bessel function of the first kind
with zero order and

mz (v) =
∣∣µvH

∣∣ (3)

σ2
z (v) =

1

2
vKvH , (4)

as in [23], both positive real numbers. Note here that the
equations (3) and (4) are not bijections, i.e. we can find
v1 ̸= v2 such that mz (v1) = mz (v2) and σ2

z (v1) = σ2
z (v2).

Also, note that mz and σ2
z correspond to the mean and variance

of the random variable |z| and that for presentation reasons we
have adopted a different notation instead of m|z| and σ2

|z|.
Thus, for an N × 1 MISO system which applies transmit

beamforming strategy and has partial channel knowledge (i.e.
the transmitter knows the statistics of the channel µ, K and the
receiver knows the channel exactly and instantaneously), the
capacity optimization problem can be formulated as follows:

Beamforming Capacity maximization:

Cbf = maximize
v

Ez

[
log2

(
1 +

P

σ2
n

|z (v)|2
)]

subject to ∥v∥ = 1.

(5)

where the distribution of |z (v)| is given by (2). The capacity
function (5) is an increasing function of all the parameters
P,mz (v) and σ2

z (v) and strictly concave with respect to v,
[21]. Hereinafter, we will assume σ2

n = 1 for simplicity. Thus,
P corresponds to the SNR.

The problem (5) above is fairly complex for real time
calculations (see [23] for detailed information) since solving
the integral and using numerical optimization methods in a
wireless transmitter is not feasible. In the following section
we give a semi-analytic solution that extremely simplifies the
problem and provides insight about the performance of the
suboptimal solutions with respect to the optimal for several
cases.

A. Changing the optimization variables

We relate the statistical parameters of the arising Rician
channel mz(v), σ

2
z(v) with the generalized angles that cor-

respond to the vectors v, µ and the eigenvectors of the
channel covariance matrix K. Since the covariance matrix of
the channel is an Hermitian positive definite matrix, it can be
decomposed to

K = UKΛKUH
K , (6)
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where the column vectors of UK , ui
K ∈ CN , i = 1, . . . , N

are the eigenvectors of K and Λk is a diagonal matrix
consisting of the eigenvalues λi ≥ 0 of K. Note that, since
K is Hermitian, the eigenvectors (columns in UK or rows
in UH

K) form an orthonormal basis in CN . Also, note that
UKUH

K = IN , where IN is the N ×N identity matrix.
Using the orthonormal basis of the row vectors of UH

K , we
can express the vectors µ, v as

v = cos(ϕ1)e
jωv

1u1
K

H
+ · · ·+ cos(ϕN )ejω

v
NuN

K

H

µ = ∥µ∥ cos(θ1)ejω
µ
1 u1

K
H
+ · · ·+ ∥µ∥ cos(θN )ejω

µ
NuN

K

H
,

(7)

where ϕi, θi are the generalized angles of vectors v, µ

with vector ui
K

H (direction cosine analysis), and ωv
i , ωµ

i are
the complex arguments of vui

K and µui
K respectively. The

generalized angle between any two vectors v1,v2 ∈ CN is

defined as cos(ϕ) = |v1v
H
2 |

∥v1∥∥v2∥ , 0 ≤ ϕ ≤ π
2 . For the generalized

angles ϕi, that characterize the projection of a vector onto an
orthonormal basis, it holds that

N∑
i=1

cos2 ϕi = 1. (8)

Equation (8) is also equivalent with the constraint of (5). From
(4), (6) and (7) we obtain

σ2
z(v) =

1

2
v{u1

K , . . . ,uN
K}ΛK{u1

K
H
, . . . ,uN

K

H}TvH

=
1

2

N∑
i=1

λivu
i
Kui

K

H
vH =

1

2

N∑
i=1

λi

∣∣vui
K

∣∣2
=

1

2

N∑
i=1

λi cos
2 ϕi

(9)

Also from (3) and (7) and taking into account that
ui
Kui

K
H

= 1 and ui
Kuj

K

H
= 0,∀i ̸= j, we have

mz(v) =
∣∣µvH

∣∣
= ∥µ∥

∣∣∣∣∣
N∑
i=1

cos θi cosϕie
j(ωµ

i −ωv
i )

∣∣∣∣∣ .
Observe in (9) that σ2

z does not depend on ωv
i , i = 1, . . . , N .

Thus, by fixing σ2
z and cosϕi, i = 1, . . . , N , in order to

maximize the capacity, one has simply to maximize mz using
ωv
i s, which evidently happens by selecting ωv

i = ωµ
i ,∀i =

1, . . . , N . In fact, it suffices to set ωµ
i −ωv

i = ξ,∀i = 1, . . . , N
where ξ is an arbitrary angle, in order to align all vectors
(complex numbers) so that the length of the sum is maximized;
here we have chosen ξ = 0. Using this assignment, we finally
get

mz = ∥µ∥
N∑
i=1

cos θi cosϕi. (10)

Thus the maximization problem of (5) is transformed with
the help of (9), (10) to an optimization problem with respect
to the vector {ϕ1, . . . , ϕN} and subject to the constraint of
(8).

III. NECESSARY CONDITIONS FOR CAPACITY
MAXIMIZATION

To approach the problem (5) we substitute equation (8)
to (9), (10) and get the following unconstrained optimization
problem

maximize Ez

[
log2

(
1 +

P

σ2
n

|z|2
)]

,

where the parameters of the Rice-distributed random variable
|z| are

2σ2
z =

N−1∑
i=1

(λi − λN ) cos2 ϕi + λN

mz = ∥µ∥

N−1∑
i=1

cos θi cosϕi + cos θN

√√√√1−
N−1∑
i=1

cos2 ϕi

 .

Let Γ(., .) be the incomplete Gamma function, we are ready
to state the first result.

Theorem 1 (Stationary Points): The necessary (but not suf-
ficient) condition for Cbf given by (5) to have a local
extremum is given by the following system of non-linear
equations

mz

∂mz

∂ϕi

∂σ2
z

∂ϕi

+ 1 =
m2

z

2σ2
z

(
1− ζ

(
m2

z, σ
2
z , P

))
, i = 1, . . . , N − 1,

(11)
where

ζ
(
m2

z, σ
2
z , P

) .
=

1

2Pσ2
z

∑∞
k=0

(
mz

2
√

Pσ2
z

)2k

k! Γ
(
−k − 2, 1

2Pσ2
z

)
∑∞

k=0

(
mz

2
√

Pσ2
z

)2k

k! Γ
(
−k − 1, 1

2Pσ2
z

) .
(12)

Proof: See Appendix A.
The sums in (12) are positive and fast converging; ten terms

are sufficient, giving a more than three digit accuracy.
Note that the solution of (11) depends on the available

power P except from the cases (a) mz = 0 (zero-mean
Gaussian channel) and (b)

(
1
σ2

)′
= 0 (corresponding to

uncorrelated channel K = I). This is in accordance with [14],
[23] where these two specific cases are inspected.

Theorem 2: The capacity Cbf of (5) has at least one station-
ary point and its maximum can only be attained at a stationary
point (despite the fact that it is defined in a bounded domain).

Proof: See Appendix B.
Obviously according to Theorems 1, 2, a unique solution

of (11) implies that the capacity of (5) will have a unique
global maximum. If we have multiple solutions, one of these
solutions will provide the maximum. In any case, the optimal
beamforming vector is given from (7) with ωv

i = ωµ
i ,∀i =

1, . . . , N . ϕ1, . . . , ϕN−1 constitute the solution of the system
of equations in (11) and ϕN is obtained using the constraint
of (8).
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Note that the optimal beamforming vector is not unique. If
v⋆ is optimal, then v⋆eia, where a is any angle, is also optimal
since the value of (9) and (10) does not change.

By looking into specific asymptotics for P , however, we
can yield two important particular cases.

Corollary 1 (low power regime): Let P → 0, then ζ → 1
and the condition in the theorem 1 can be rewritten as

mz
∂mz

∂ϕi
+

∂σ2
z

∂ϕi
= 0, i = 1, . . . , N − 1 (13)

Note that the solution of Corollary 1 corresponds to the
SNR maximization solution, presented in [23]. This is rational
since log(x) ≈ x for very small x. Thus, when P → 0, ca-
pacity maximization of (5) coincides with SNR maximization.
However, the resulting optimal beamforming vector is different
from the one given in [23], but this is not surprising as we
explained above.

Corollary 2 (high power regime): Let P → ∞, then the
condition of theorem 1 can be rewritten as

e
m2

z
2σ2

z = 1− mz

2σ2
z

∂σ2
z

∂ϕi

(
∂mz

∂ϕi

)−1

, i = 1, . . . , N − 1 (14)

A proof of Corollary 2 is given in the Appendix C. Let
ϕ and ϕ be vectors containing the roots of (13) and (14)
respectively and ϕ⋆ the roots of (11). Our simulations indeed
show that ϕ ≤ ϕ∗ ≤ ϕ (where ≤ denotes element-wise
ordering), though a proof is not mathematically tractable.

IV. SYSTEM OF TWO EQUATIONS LEADS TO OPTIMAL
SOLUTION

From (11), equating by parts after some mathematical
manipulations we obtain the following very useful set of
equations

∂mz

∂ϕi

∂σ2
z

∂ϕi

=

∂mz

∂ϕj

∂σ2
z

∂ϕj

, i ̸= j, i, j ∈ {1, . . . , N − 1}.

Using the above, after executing the differentiations, we have

(λ1 − λN )
cos θi
cosϕi

= (λi − λN )
cos θ1
cosϕ1

+ (λ1 − λi)
cos θN
cosϕN

,

i = 2, . . . , N − 1.
(15)

Note that all the cosϕi variables can be written as a function of
cosϕ1 and cosϕN . Thus using the above equation and with the
help of the constraint of (8), we can reduce the N−1 equations
of Theorem 1 to the following system of two equations

mz∥µ∥
cos θ1−cos θN

cosϕ1

cosϕN

(λ1−λN ) cosϕ1
+

m2
z

2σ2
z

(
ζ
(
m2

z, σ
2
z , P

)
− 1
)
=−1

cos2 ϕ1 + cos2 ϕN + (λ1 − λN )2 cos2 ϕ1 cos
2 ϕN×

N−1∑
i=2

cos2 θi

[(λi − λN ) cos θ1 cosϕN−(λi − λ1) cosϕ1 cos θN ]
2 =1

(16)

where mz, σz are expressed as functions of cosϕ1, cosϕN

by combining (9) and (10) with (15). Obviously Corollaries

0 20 40 60 80 100
P

0.30

0.32

0.34

0.36

0.38

j1

Fig. 1. Optimal solution of (16) as a function of power. Here we have
used µ = ∥µ∥ {1, 1}, ∥µ∥ = 2 and |k12| = 0.5. The lower dashed line
corresponds to ϕ and the upper dashed line to ϕ.

1 and 2 for low and high power regimes can be simplified in
the same way by using the second equation of (16) and only
the first equation of (13) and (14) respectively.

We solve the system of equations (16), using secant
method’s root finding algorithm. The secant method is prac-
tically an approximation of Newton’s method. In order to
calculate the derivative of (16) which is necessary for New-
ton’s method, we use the secant method (approximate the
derivative using the slope of a line through two points on the
function, derivatives of (16) are continuous). Both algorithms
can converge remarkably quickly, especially when the iteration
begins in the vicinity of the desired root. Since the dominant
eigenvector of µµH + K is the sub-optimal solution which
maximizes SNR, we know that it is close to the solution of
(16). Thus, by beginning the iteration from this solution, the
algorithm converges very fast. Our simulations showed that
with maximum five iterations, we achieve a more than three
digit precision which is sufficient for our calculations.

The most practical and efficient algorithm for the full
rank optimization problem was presented recently in [6]. If
beamforming is the optimal transmit strategy, solving equation
(23) of that paper can track the beamforming vector. However,
(23) is a matrix equation (system of N equations) with com-
plex elements and integrals. Although the Multidimensional
Complex Iterative Algorithm in [6] provides the solution, our
proposed solution is incomparably easier since (16) is only a
system of two real valued equations. Moreover, in cases where
beamforming is the optimal transmit strategy, our proposed
scheme along with SNR optimization are the only practical
solutions.

V. NUMERICAL RESULTS

In this section we present numerical results that give insight
to the problem. We use as a toy case the 2× 1 MISO system
and a channel with µ = {µ1, µ2} and K = {kij}i=1,2

j=1,2
where

k11 = k22 = 1, k12 = |k12|√
2
+ |k12|√

2
i and k21 = k∗12 (k∗12 is the

conjugate of k12). First, in Figure 1 we show the dependence
of the optimum point on the available power. On the same
Figure, we plot the solutions of low power and high power
cases. The solution for any P is always bounded by these
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0.010

g

Fig. 2. Gain g as a function of ∥µ∥ and |k12|. Here we have used P = 10,
µ = ∥µ∥ {1 + i, 1 + i} which yields θ1 = 22.5o.
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0.0
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1.0  k12 ¤

0.00

0.05

0.10

g

Fig. 3. Gain g as a function of ∥µ∥ and |k12|. Here we have used P = 10,
µ = ∥µ∥ {1 + i, 2− i} which yields θ1 = 57o.

two extreme cases. Since these two values are close to each
other, there exist settings where a good approximation can
be obtained either by using the lower bound (which is given
in closed form) or by using the upper bound which is more
accurate for a wider span of values.

In the second numerical case, we examine the benefit of
solving (16) compared to using the approach in [23] for
maximizing SNR. In particular, we assign to v the dominant
eigenvector of µµH+K and calculate the arising capacity, de-
noted as CSNR. Finally, we calculate the gain g

.
= Cbf −CSNR

and we plot it in Figures 2,3 and 4 for several settings.
First, note that for ∥µ∥ = 0 or |k12| = 0 SNR optimization

achieves the maximum capacity in all three cases. Next, the
maximum gain is different for the three cases. Specifically,
the gain is larger when the angle of the mean vector µ
with u1

K (θ1) is closer to 90o (0.4bps/Hz for 80o, which
is significant). As θ1 increases, the difference between the
dominant eigenvalue and the other eigenvalue of µµH + K
becomes smaller. This implies that transmitting only over the
dominant eigenvector becomes worse and worse. Thus the gain
g increases.

Next we study the efficiency of Capacity maximization ver-
sus SNR maximization by varying the available transmitting
power for different cases of norm and correlation. Figure 5
verifies that for small power, the SNR solution is optimal
Cbf = CSNR. Also it gives an estimate of the actual capacity
benefit for several values of transmitting power. Note that for
high enough power, the gap between capacity optimization

0 1 2

°Μ ´

0.00.51.0
 k12 ¤

0.0

0.1

0.2

0.3

0.4

g

Fig. 4. Gain g as a function of ∥µ∥ and |k12|. Here we have used P = 10,
µ = ∥µ∥ {0.3,−0.3− 0.3i} which yields θ1 = 80o.
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P
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0.04

0.06

0.08

0.10

Cbf -CSNR

°µ´=1.5, k12¤=0.5

°µ´=1.6,  k12¤=0.7

°µ´=1.75,  k12¤=0.9

Fig. 5. Difference Cbf −CSNR as a function of transmitting power P (the
axis of P is in logarithmic scale). Here we have used µ = ∥µ∥ {1+i, 2−i}
and different cases for the norm ∥µ∥ and correlation |k12|.

and SNR optimization is constant and depending on the
parameters.Thus, it makes sense to compare the SNR solution
with the high power regime solution ϕ.

Let Cϕ be the capacity achieved using the solution from
(14). Figure 6 and Figure 7 show the differences Cϕ − CSNR
and Cbf −Cϕ correspondingly, where P axis is in logarithmic
scale. In Figure 6 we observe, that for P > 1, the solution
of (14) outperforms the SNR maximization solution and for
extremely large values of P , the gain between Cbf − CSNR
is constant depending on the parameters. Also from Figure 7
we observe, that for P > 10, Cϕ is very close to the optimal
solution of (16). For large values of P , Cbf and Cϕ are equal,
as expected. Therefore, for practical values of transmitting
power 1 ≤ P ≤ 1000, the solution of (14) outperforms the
solution of [23] (or the solution of (13)). Also, for P > 10,
Cϕ arising from (14), is practically equal to Cbf , so we can
call it near-optimal for this range.

Figures 8 and 9 show the difference Cϕ−CSNR as a function
of the channel mean norm and power respectively for 10 ×
1 systems. These Figures present similar results and are in
accordance to Figures 2,3,4,5 revealing that, in general, an
N × 1 system behaves analogously to a 2× 1 system.

Concluding the results we can infer an engineering rule of
thumb for using the several available approaches for calculat-
ing an efficient beamforming vector v. If the channel mean
norm is large (∥µ∥ > 5) or close to zero (∥µ∥ < 1) the gain g
between the optimal solution and the SNR maximization so-
lution is small and the SNR maximization method is preferred
(solution of [23] or equivalently low power regime, (13)). For
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Fig. 6. Difference Cϕ − CSNR as a function of transmitting power P (the
axis of P is in logarithmic scale). Here we have used µ = ∥µ∥ {1+i, 2−i}
and different cases for the norm ∥µ∥ and correlation |k12|.
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Fig. 7. Difference Cbf − Cϕ as a function of transmitting power P (the
axis of P is in logarithmic scale). Here we have used µ = ∥µ∥ {1+i, 2−i}
and different cases for the norm ∥µ∥ and correlation |k12|.

the intermediate values of norm 1 < ∥µ∥ < 5, the solution
of (16) should be used, unless P > 10 where the solution of
(14) is equivalent and easier to compute.

VI. CONCLUSIONS

We have investigated the capacity-achieving input covari-
ance for an N × 1 MISO system that uses beamforming as
transmit strategy and the channel is known instantaneously at
the receiver and statistically at the transmitter. Previously, there
was no solution revealing the optimal beamforming vector,
unless beamforming was the optimal transmit strategy (which
occurs in specific cases, [20]). In this paper we presented
an analytical approach which provides directly the optimal
beamforming vector after solving numerically a system of
two equations, (16). This analysis extremely simplifies the
beamforming capacity optimization problem, outperforms the
existing solutions and promises a similar solution for the
full rank optimization problem. So far, SNR maximization is
the simplest beamforming technique, which however provides
sub-optimal results. Examining the 2 × 1 and 10 × 1 MISO
systems indicatively, we have shown that the capacity achieved
by SNR maximization may be up to 0.4bps/Hz less than the
optimal solution achieved by our proposed scheme for some
cases. Due to the simplicity of SNR maximization method,
we examined the comparison between the two schemes and
presented a rule of thumb when to use each of the two

1 2 3 4 5
°Μ ´

0.02

0.04

0.06

0.08

0.10

Cbf -CSNR

Fig. 8. Difference Cbf − CSNR as a function of channel mean norm for a
10× 1 system. The parameters are θ1 = θ6 = 85o, θ2 = θ9 = θ10 = 68o,
θ4 = θ5 = 63o, θ7 = 74o, θ8 = 80o, P = 10.
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Fig. 9. Difference Cbf − CSNR as a function of transmitting power P for
the same 10× 1 system as in Figure 8.

approaches.

APPENDIX A

Proof of Theorem 1: In the following we will focus on
the partial derivative with respect to a particular variable (say
ϕi) and thus we will be using (.)

′ .
= ∂(.)

∂ϕi
. From (2) and (5)

we have

Cbf =

∫ ∞

0

log2(1 + Px2)
x

σ2
z

I0

(
mz

σ2
z

x

)
e
− x2+m2

z
2σ2

z dx.

With a change of variables we obtain,

Cbf =

∫ ∞

0

log2 (1 + Px)
1

2σ2
z

I0

(
mz

σ2
z

√
x

)
e
− x+m2

z
2σ2

z dx

=
1

2σ2
z

e
− m2

z
2σ2

z

∫ ∞

0

log2 (1 + Px) I0

(
mz

σ2
z

√
x

)
e
− x

2σ2
z dx

=
1

2σ2
z

e
− m2

z
2σ2

z I,

(17)

where I =
∫∞
0

log2 (1 + Px) I0

(
mz

σ2
z

√
x
)
e
− x

2σ2
z dx.

The necessary but not sufficient condition of Cbf to have a
local extremum is

∂Cbf

∂ϕ1
=

∂Cbf

∂ϕ2
= · · · = ∂Cbf

∂ϕN−1
= 0. (18)

Thus from (17), (18) and σ2
z > 0 we have
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(
1

2σ2
z

e
− m2

z
2σ2

z

)′

I +
1

2σ2
z

e
− m2

z
2σ2

z I ′ = 0 ⇔

I ′ = I

[
σ2
z
′

σ2
z

+

(
m2

z

2σ2
z

)′]
,

(19)

But, I ′ =
∫∞
0

log2(1+Px)
(
I0

(
mz

σ2
z

√
x
)
e
− x

2σ2
z

)′
dx which

after some mathematical manipulations with the derivative
becomes

I ′ =

(
mz

σ2
z

)′

Z1 −
(

1

2σ2
z

)′

Z0, (20)

where Zi =
∫∞
0

log2 (1 + Px)x
2−i
2 Ii

(
mz

σ2
z

√
x
)
e
− x

2σ2
z dx.

Expanding Ii(x) in its infinite sum representation, i.e.
Ii(x) =

∑∞
k=0

1
k!(k+i)!

(
x
2

)2k+i, we can write Zi as

Zi =
∞∑
k=0

(
mz

2σ2
z

)2k+i

k!(k + i)!

∫ ∞

0

log2 (1 + Px)xk+1e
− x

2σ2
z dx

and with the help of

∫ ∞

0

ln (1 + x)xk−1e−βxdx = Γ (k) eββ−k
k−1∑
n=0

βnΓ (−n, β)

from Appendix A in [25], we derive

Zi =
e

1
2σ2

zP

ln 2

∞∑
k=0

(k + 1)!

k!(k + i)!

(
mz

2σ2
z

)2k+i

(2σ2
z)

k+2Sk+1,

(21)
where Sk =

∑k
n=0

(
2σ2

zP
)−n

Γ
(
−n, 1

2σ2
zP

)
. Similarly we

can solve the integral I which becomes

I = 2σ2
z

e
1

2σ2
zP

ln 2

∞∑
k=0

1

k!

(
m2

z

2σ2
z

)k

Sk. (22)

Substituting (20), (22) in (19) we get

(
mz

σ2
z

)′

mz

∞∑
k=0

1

k!

(
m2

z

2σ2
z

)k

Sk+1 −
(

1

σ2
z

)′

2σ2
z

∞∑
k=0

k + 1

k!(
m2

z

2σ2
z

)k

Sk+1 =

[
(σ2

z)
′

σ2
z

+

(
m2

z

2σ2
z

)′] ∞∑
k=0

1

k!

(
m2

z

2σ2
z

)k

Sk.

Noticing Sk+1 = (2σ2
zP )−k+1Γ

(
−k − 1, 1

2σ2
zP

)
+ Sk and

after some mathematical manipulations, we finally get (11).

APPENDIX B

Proof of Theorem 2: We begin by showing that
∂Cbf

∂ϕi

∣∣∣
ϕi=0

≥ 0 and ∂Cbf

∂ϕi

∣∣∣
ϕi=

π
2

≤ 0, ∀i = 1, . . . , N − 1.

From (8) and (9) we have that

∂σ2
z

∂ϕi
=

1

2
(λi − λN ) cosϕi sinϕi.

Then evidently

∂σ2
z

∂ϕi

∣∣∣∣
ϕi=0

=
∂σ2

z

∂ϕi

∣∣∣∣
ϕi=

π
2

= 0,∀i = 1, . . . , N − 1, (23)

where (.)|ϕi=0 denotes the value of (.) at ϕi = 0. From (19),
where the first equation is equivalent to ∂Cbf

∂ϕi
= 0, with some

minor manipulations and utilizing (23) we have that

∂Cbf

∂ϕi

∣∣∣∣
ϕi=0

≥ 0 ⇔

∂I

∂ϕi

∣∣∣∣
ϕi=0

≥
(

I

σ2
z

∂m2
z

∂ϕi

)∣∣∣∣
ϕi=0

.

From (20) we have ∂I
∂ϕi

∣∣∣
ϕi=0

=
(

Z1

σ2
z

∂m2
z

∂ϕi

)∣∣∣
ϕi=0

. Taking into

account (21) and (22) we obtain(
2mz

∂mz

∂ϕi

∞∑
k=0

1

k!

(
m2

z

2σ2
z

)k

Sk+1

)∣∣∣∣∣
ϕi=0

≥ (24)(
2mz

∂mz

∂ϕi

∞∑
k=0

1

k!

(
m2

z

2σ2
z

)k

Sk

)∣∣∣∣∣
ϕi=0

, (25)

which is true since mz ≥ 0, ∂mz

∂ϕi

∣∣∣
ϕi=0

≥ 0 and Sk+1 ≥ Sk.

Thus, we have shown the first inequality.
When ϕ = π

2 , the inequality (25) is inverted and
∂mz

∂ϕi

∣∣∣
ϕi=0

≤ 0 and thus similarly the second inequality is

shown.
Consequently, each equation ∂Cbf

∂ϕi
= 0 will have at least one

solution in [0, π
2 ] independently of the other variables ϕ\{ϕi}.

This implies that the capacity of (5) has at least one local
extremum and the system of non-linear equations defined in
Theorem 1 has at least one solution. Also, due to the claim
above, the maximum is not attained at the boundaries of the
domain of ϕ unless a stationary point is located there. Thus,
the second claim of the theorem is proved.

APPENDIX C

Proof of Corollary 2: Note that

lim
x→0

Γ(a, x)

xa
= −1

a
.

Thus taking into account that
∑∞

k=0
xk

k!
1

k+1 = ex−1
x and∑∞

k=0
xk

k!
1

k+2 = (x−1)ex−1
x2 we obtain

lim
P→∞

ζ =

1
2σ2

zP

∑∞
k=0

(
m2

z
4σ4

zP

)k

k!
(2σ2

zP )k+2

k+2∑∞
k=0

(
m2

z
4σ4

zP

)k

k!
(2σ2

zP )k+1

k+1

(26)

=

(
m2

z

2σ2
z
− 1
)
e

m2
z

2σ2
z + 1(

e
m2

z
2σ2

z − 1

)
m2

z

2σ2
z

. (27)

Finally, substituting (27) in (11) and after some manipula-
tions we obtain the result of Corollary 2.
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