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Abstract

Content-centric publish/subscribe networking is a flexible communication
model that meets the requirements of the content distribution needs in the
Internet, where the proliferation of content distribution requires information
to be addressed by semantic attributes rather than origin and destination
identities. In current implementations of publish/subscribe networks mes-
sages are not stored and only active subscribers receive published messages.
However, in a dynamic scenario, where users joins the network at various in-
stances, a user may be interested in content published before its subscription
time. In this paper, we introduce a mechanism that enables storing in such
networks, while maintaining the main principle of loose-coupled and asyn-
chronous communication. Furthermore, we propose a new storage place-
ment and replication algorithm which differentiates classes of content and
minimize the clients response latency and the overall traffic of the network.
Moreover we present and compare two replication assignment alternatives
and examine their performance when both the locality and quantity of users
request change. The performance of our proposed placement and replication
assignment algorithm and the proposed storing mechanism is evaluated via
simulations and insights are given for future work. The proposed mechanism
is compared with mechanisms from the CDN context and performs less than
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1%-15% (regarding the conducted experiment) worse than a greedy (near
optimal) approach installing up to 3 times less storages in the network and
providing the necessary differentiation among the classes of the content.

Keywords: storage planning, replication placement, content-centric
publish/subscribe networks.

1. Introduction

Publish/subscribe (pub/sub) systems (topic based or content based) are
organized as a collection of autonomous components, namely the clients and
the event dispatcher. Clients act either as publishers, publishing new events
in the network, or subscribers by subscribing to the classes of events they
are interested in. The event dispatcher (or rendezvous point or event broker
or simply broker) on the other hand, is responsible to collect subscriptions
and forward publications to interested subscribers. In pub/sub networks,
the selection of a message is determined entirely by the client, which uses
expressions (filters) that allow sophisticated matching on the event content.

In current pub/sub implementations, any event is guaranteed to reach all
interested subscribers as long as their subscriptions are known to the network
at publish time. However, in a dynamic distributed environment, clients
join and leave the network during time, and it is possible that a subscriber
joins the network after the publishing of an interesting message. In current
pub/sub systems, it is not possible for a new subscriber to retrieve already
published messages that match his/her subscription. Therefore, enabling
the retrieval of published content by means of storing is one of the most
challenging problems in pub/sub networks.

Content delivery servers (“surrogate servers” in CDNs or simply “stor-
ages” in this work) replicate the whole content of a given server and are
targeting to speed up the delivery of content by reducing the load on the
origin servers and the network itself. When a client is interested in a piece
of information of a given server, his/her request is redirected to one of the
existing storages (e.g. the closest one or the one satisfying other criteria such
as the load of the candidate storage). Since storages serve only a portion
of the total requests and are placed closer to the client, clients are served
faster. A client’s request is redirected to a storage only if that storage is a
replica of the targeted server otherwise the request is directed and served
by the server itself.

In this work we assume that messages are classified according to their
class (topic) and we:
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• Enhance the pub/sub communication paradigm with an advertisement
and a request/ response mechanism so that storages can advertise the
class of the content that they have stored so that clients can retrieve
that stored content.

• Propose a new algorithm for the selection of M storage points among
the N brokers (M < N) based on: a) the locality and the popularity
of the interests for each topic, b) the targeted replication degree of
each topic (as replication degree we name the number of replicas kt

(1 ≤ minkt ≤ kt ≤ maxkt ≤ M) of the topic t among the storages)
and c) the storage capacity SC of each storage.

• Evaluate through simulations our design of the storing technique and
the new placement and replication assignment algorithm.

The objective function of our scheme is to minimize the total traffic load
of all the classes of content in the network subject to installing the mini-
mum number of storages in the network and given that storage servers have
storage limitations.

The rest of the paper is organized as follows. In Section 2 a brief in-
troduction of storing in pub/sub architectures is given, followed by a brief
description of the storage placement problem while, in Section 3 we de-
scribe the problem under investigation. In Section 4, we shortly describe
the pub/sub architecture and present the proposed advertisement and re-
quest/response mechanism. The new algorithm for the selection of the stor-
age location and the replication assignment of the content is presented in
Section 5. Section 6 is devoted to performance evaluation via simulations.
Finally, we conclude the paper and give insights for future work in Section
7.

2. Related Work

Internet’s usage has considerably changed over the past years from a re-
source sharing mechanism between a pair of hosts to a content distribution
and retrieval mechanism. In that changing environment, pub/sub paradigm
is becoming increasingly popular for content access and dissemination. Par-
ticularly there are several research efforts that develop an overlay event
notification service like IBM’s Gryphon [1], Siena [2], Elvin [3] and REDS
[4] which implement the pub/sub architecture. Moreover, there are also sev-
eral research efforts aiming to switch from host-oriented to content-oriented
networking like CCN [5], DONA [6], PSIRP [7], PURSUIT [8] and 4WARD
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[9] which attempt to name data/content instead of naming hosts in order
to achieve scalability, security and performance. The various pub/sub mod-
els are classified according to the semantic of the subscription language.
Among the pub/sub models the most known are the topic-based pub/sub,
which enables information consumers to register to a set of predefined topics
organized into a hierarchy, and the content-based pub/sub, which supports
subscriptions that follow an attribute/value scheme. As mentioned earlier
we adopt a hybrid pub/sub scheme where published messages are classi-
fied according to their topic while the matching of subscriptions with the
publications follow the content-based scheme.

Despite the number of the content-oriented research efforts, caching/
storing and replication have not received attention in the literature. Only in
[11], a historic data retrieval pub/sub system is proposed, where databases
are connected to various brokers, each associated with a topic to store. In
[11] every message is stored only once and no placement strategies have been
examined, while there is no description of the mechanism for the retrieval
of the stored data. Moreover, in [12] we introduced a new opportunistic
caching scheme for pub/sub networks where each broker of the network is
a potential caching point, while a first attempt with an off-line replication
algorithm in topic-based publish subscribe networks is presented in [13].

On the other hand the placement problem, in the context of Content
Delivery Networks and Web Proxies, is a thoroughly investigated problem.
Particularly in [14] and [15] authors approached the placement problem with
the assumption that the underlying network topologies are trees. This sim-
ple approach allows the authors to develop optimal algorithms, but on the
other hand they consider the problem of placing replicas for only one origin
server. The placement problem is in fact an NP-hard problem when striving
for optimality [16], but there is a number of studies [17]-[22] where an ap-
proximate solution is pursued. Their work is also known as network location
or partitioning and involves the optimal placement of k service facilities in a
network of N nodes targeting the minimization of a given objective function.
This work is also known as the k-median problem.

More placement algorithms have been proposed in [16]. Particularly au-
thors firstly formulate the problem as a combinatorial optimization problem,
show that this problem is NP-hard and develop and compare four natural
heuristics algorithms. They found that the best results are obtained with
heuristics that have all the storages cooperating in making the replication
decisions. Finally in [23] authors introduce a framework for evaluating place-
ment algorithms. Firstly, they classify and qualitatively compare placement
algorithms using a generic set of primitives that capture several objective

4



functions and near optimal solutions, while secondly provide estimates for
their decision time using an analytic model. While most models have a
similar cost function (optimize bandwidth and/or storage usage costs for a
given request pattern), less attention has been given to network constraints
(limited storage capacity of the storage servers).

3. Problem Description

We assume a content-centric pub/sub network with arbitrary topology
represented by a graph G = (N, E). T different topics should be stored
at M storages, where each storage has the capability to store SC topics.
Each topic t ∈ T should be replicated kt times, where minkt < kt < maxkt.
Requests for the topics are generated at various nodes and they trigger
the transfer of the requested item from a storage to the node where the
request was generated. The proposed mechanism is composed by two phases
namely the Planning and the Assignment phase. In the Planning phase the
proposed mechanism selects M points out of the N nodes of the network
to place the storages, while in the Assignment phase assigns each topic t
at exactly kt different storages with the target to minimize the total traffic
load in the network.

Generally in a real content delivery pub/sub network the Planning of
the network changes rarely, since it requires the reallocation of the storages
among the network nodes. On the other hand the Assignment of the topics is
more flexible and the CDN provider is able to reassign the topics among the
storages when the locality and the quantity of the request patterns change
is such a way that the performance of the network is degraded. Of course a
reassignment requires the calculation of the new places for each topic and the
transfer of topics in those locations, but as shown later in the performance
analysis is an efficient way to retain the performance of the system in high
levels without re-planning the whole CDN network.

The storage capacity of each replication server usually refers to TBytes
but for simplicity we assume here that the number of messages is the same for
each topic and messages are of the same size. Alternatively, at each snapshot
of the system in the network, there exists the same number of messages for
each topic. The SC parameter is a limitation introduced by the storage
providers and refers to the maximum storing capability of each storage in the
network. On the other hand the minkt < kt < maxkt parameter (replication
degree of each topic) is a limitation introduced by the content providers of
the network and refers to the minimum and maximum number of replicas
that the content provider is willing to pay for. Finally, the M parameter
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refers to the number of storages that a storage provider should install in the
network to serve the storage demands of each topic t.

4. Enabling Storing in Pub/Sub Networks

In this work we consider a pub/sub network which uses the subscription
forwarding routing strategy [2], where the routing paths for the published
messages are set by the subscriptions, which are propagated throughout the
network so as to form a tree that connects the subscribers to all the brokers
in the network. In that scheme, publishers join the network when they
have something to publish, therefore in our approach the entity of the origin
server does not exist.

In a pub/sub network when a client issues a subscription, a message
containing the subscription filter is sent to the broker the client is attached
to. The filter is inserted in a Subscription Table (ST), together with the
identifier of the subscriber. Then, the subscription is propagated by the
broker, which now behaves as a subscriber with respect to the rest of the
dispatching network, to all of its neighboring brokers on the network. In
turn, the neighbors record the subscription and re-propagate it towards all
further neighboring brokers, except for the one that sent it. Finally, each
broker in the network has a ST, in which for every neighboring broker there
is an associated set of filters containing the subscriptions sent by them.

4.1. Advertisement and Request/Response Mechanism
In this section we present the advertisement and the request/response

mechanism, which provides a pub/sub system with the ability to store and
retrieve information published in the past and make it available for future
clients. Particularly, we will present the new mechanisms through the ex-
ample of Figures 1 and 2.

In order to retrieve stored information, we add to the system three
additional types of messages (besides the already existing Publish() and
Subscribe()), Advertise(), Request() and Response(). When a new
storage “str1 ” is installed at broker 5 (Figure 1), it issues a Subscribe()
message with the topics (class of events) that is willing to store (top a and
top b in the given example). In that way, it acts as a client to future publi-
cations matching the subscribed topics and, each time a publication occurs
(publisher attached to broker 1 publishes message msg a matching top a),
it stores the message (the message is also stored to str2 ). The “str1 ” also
issues an Advertise() message, which contains the topics that stores and
the distance in hops from the storage (the distance attribute is built hop by
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Figure 1: Advertising and Storing of information (in red are the new entries of STs and
ATs created by the installation of the “str1”). Publisher at broker 1 publishes a message
msg a that matches top a and is stored at “str1” and “str2”.

hop). Advertisements are treated similarly to subscriptions and form a tree
that connects the “str1 ” to all the brokers in the network. Advertisements
are inserted in the Advertisement Table (AT) which is similar to ST. AT is
a new feature that we added to the pub/sub system. Coverage also occurs
with advertisements, as with subscriptions, but in a slightly different way.
Particularly, when a broker receives an advertisement, checks in the distance
field and if the distance is equal to another entry (for the same topics), it
adds the advertisement to the AT and stops forwarding the advertisement
(broker 3 in Figure 1). Keeping more than one entries for the same topic in
an AT, enables load balancing capabilities to requests passing from that par-
ticular broker. On the other hand, when a broker receives an advertisement
for a storage which is closer compared to the other storages already in the
AT, it adds the advertisement to the AT, removes the previous entries and
forwards it further (brokers 5 and 6 in Figure 1). Finally, when a broker re-
ceives an advertisement for a storage which is further compared to the other
storages already in the AT simply stops the forwarding of the advertisement
without changing the entries of the AT.

When a client (client A in Figure 2), is interested in retrieving stored
content apart from subscribing (if he/she is also interested for future pub-
lications) also makes a request by sending a Request() message containing
the interested filter (fltr a). The filter contains the topic that the client
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Figure 2: Retrieval of stored information using the request/response mechanism (in red
are the new entries of STs created by the subscription of client A).

is interested in. Filters are identical to topics but they can contain more
attributes to enable sophisticated (content-based) matching. Source routing
is used for the forwarding of the Request() (the path is being built hop
by hop and is included in the Request() header). Broker 6 upon receiving
the Request() message checks in its Advertisement Table (AT) for entries
matching the requested topic (top a in this case). The broker forwards the
Request() message to the broker who had advertised the matching topic
and is closer to the client (in this example broker 5). Finally, “str1” re-
ceives the Request() message, matches its stored content with the whole
filter (not just the topic) and initiates a Response() message for each match
(messages msg a in Figure 2).

A Response() message carries a stored message as well as the sequence of
nodes carried by the initiating Request() message (source routing). When
a broker receives a Response() message, pops off its identifier from that
sequence and forwards it to the first broker of the remaining sequence. In the
end, client A will receive every stored message matching his/her requesting
filter.
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5. Placement and Replication Assignment Strategy

We use as the base of our placement and replication assignment scheme
algorithms presented in the context of CDN networks. Particularly in [16]
and [17], authors developed several placement algorithms that use workload
information, such as latency (distance from the storage points) and request
rates, to make the placement decision. Their main conclusion is that the so
called “greedy” algorithm that places storages based upon both a distance
metric and request load, performs the best and very close to the optimal
solution.

5.1. Greedy algorithm
Here, we shortly present the greedy algorithm assuming that there exists

only one class of content in our system (one topic), or equivalently there
is no distinction in the content. We let ri be the demand (in reqs/sec)
from clients attached to node i. We also let Pij be the percentage of the
overall request demand accessing the target server j (traditional placement
algorithms replicate a specific origin server) that passes through node i. Also
we let the propagation delay (hops) from node i to the target server j as
Dij . If a storage is placed at node i we define the Gain to be Gij = Pij ·Dij .
This means that the Pij percentage of the traffic would not need to traverse
the distance from node i to server j decreasing the overall network traffic
by:

Dij

N∑
l=1

Rl

where

Rl =

{
rl if i is on the path from l to j

0 otherwise.

The greedy algorithm chooses one storage at a time (we need k storages
out of the N nodes of the network). In the first round, it evaluates each
of the N nodes to determine its suitability to become a storage (replication
point of server j). It computes the Gain associated with each node and
selects the one that maximizes the Gain. In the second round, searches for a
second storage which, in conjunction with the storage already picked, yields
the highest Gain. The greedy algorithm iterates until k storages have been
chosen for the specific server j.
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rt
i : request rate for topic t in broker i

N : number of nodes (brokers) in the network
M : (M < N) number of storages in the network
kt : (kt ≤M) replication of each topic t in the network
SC : storage capacity of each storage point in the network
T : number of classes of content (topics)
wt : weight of each topic in the network
SBV : storage brokers vector
PSt : possible stores vector for each topic t

Table 1: Parameters used by the placement/replication algorithm

5.2. Modified greedy algorithm
In the pub/sub network architecture that we assume in this paper, we

have no knowledge of the location of the origin server, or differently, there
is no such a server. Publishers join the network, publish their content and
disappear. So in order to obtain the location of the storages we modify the
greedy algorithm. Particularly we repeat the above procedure N times as-
suming each time that the targeted server j is a different node (broker) of the
network. We get in that way N vectors of k possible storages. Precisely each
vector has N elements with k ones in the index of the selected storages and
N−k zeros in every other place (for example vector [0 0 0 1 0 1] means that
of the 6 nodes of the network the selected k = 2 possible storages are nodes
4 and 6). In two different vectors there might be subsets of possible storages
present in both of them. Finally, we select as our storages those k nodes that
appeared more times in the per element summation of the N vectors and
install at each one a storage following the mechanism described in 4.1. The
modified greedy algorithm presented here assumes uniform distribution of
the probability among the N nodes of the network that publications could
occur. Of course other forms of probability distributions could be used,
and each vector should be first weighted with its probability before the per
element summation of the N vectors.

5.3. Placement and replication assignment algorithm for pub/sub networks
Here we use the modified greedy algorithm described above for the case

where in our network exist T different classes of content (topics). Next we
present the Steps of the proposed algorithm side by side with the example of
Figure 3 (Table 1 contains all the useful parameters required by the proposed
algorithm):
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1. For each topic t we execute the modified greedy algorithm presented
in Section 5.2 and we get T vector of possible storages PSt. Regarding
the example we get:
PSa = [0 3 5 0 2 2]
PSb = [0 2 5 0 5 0]
PSc = [0 2 5 0 5 0]
for the three topics accordingly. The [0 3 5 0 2 2] means that out of the
N = 6 executions of the modified greedy algorithm, node 2 appeared
3 times, node 3 appeared 5 times and so on.

2. Each vector (PSt) is weighted by wt =
∑N

i=1
rt
i∑N

i=1

∑T

t=1
rt
i

. wt shows the

significance regarding the traffic demand of each topic in the network.
The weights for the given example are:
wa = 17/50 = 0.34, wb = 27/50 = 0.54, wc = 6/50 = 0.12
So the vectors from step 1 are transformed to
PSa = [0 1.02 1.7 0 0.68 0.68]
PSb = [0 1.08 2.7 0 2.7 0]
PSc = [0 0.24 0.6 0 0.6 0].

3. We select as our storages those M nodes that appeared more times in
the per element weighted summation of the T vectors. We call that
vector as storage brokers vector SBV. The per element summation of
the above three vectors into a single vector gives [0 2.34 5 0 3.98 0.68]
meaning that the final M = 3 storages in SBV are nodes 3, 5 and 2.

4. For each topic t, starting from the most significant (based on the
weight), we assign kt storages following the procedure below:

• For each entry in the PSt of topic t calculated in step 1 assign a
storage if that entry also appears in the SBV calculated in step 3
and only if in that storage has been assigned less than SC topics
until we get kt storages (replication of topic t).

In the example starting from topic b then topic a and finally topic c
(based on their weights) we assign them to k = 2 storages. Topic b is
assigned to nodes 3 and 5 which were the nodes for topic b appeared
more times by step 1. Topic a is also assigned to nodes that were
produced by step 1, nodes 2 and 3, while topic c is assigned to nodes
2 and 5. Node 5 was among the most popular selections produced
by step 1 while node 2 was the only storage in SBV with less than
SC = 2 assignments.

Step 4 of our algorithm is also known as the Generalized Assignment
Problem which even in its simplest form is reduced to the NP-complete
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Figure 3: Topology and workload information (requests/second) per each class of content
(T = 3 topics) together with, kt = k = 2, SC = 2 and M = 3 form the inputs of the
placement algorithm for the pub/sub network.

multiple knapsack problem. In this paper for the solution of the assignment
problem we used the heuristic approaches described above and in Section
5.5, while more approaches could be found in literature [24].

5.4. Cost Model
Steps 1-3 of the placement algorithm described above comprise the Plan-

ning phase of the algorithm while Step 4 is the Assignment phase. In this
section we present the cost model of the Assignment phase of the proposed
placement algorithm, which as mentioned above is an NP-complete problem.
The access of an information item stored in storage x by node y generates
a traffic load equal to the length (number of hops) of the path from x to
y. Given that we wish to optimize the total traffic load, the access scheme
is that we always access the closest node among those holding the specific
item. Thus given that access mechanism we seek to decide the replication
assignment of each topic.

Let C be the traffic load corresponding to any storage configuration.
For that storage configuration we can write:

C =
T∑

t=1

Ct (1)

where Ct is the traffic load corresponding to configuration of topic t only.
We then have,

Ct =
kt∑

n=1

∑
l∈N t

n

rt
lDln (2)
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where N t
n is the collection of nodes accessing item t from its replication

points at node n, rt
l is the request rate for topic t from node l, and Dln is

the distance (in hops) from node l to node n.
And for the overall network traffic from Equations 1 and 2, we get:

C =
T∑

t=1

Ct =
T∑

t=1

kt∑
n=1

∑
l∈N t

n

rt
lDln (3)

The minimization of the overall traffic cost is given by the minimization
of the following constrained nonlinear multivariable function.

min(C) such that


T∑

t=1

kt ≤ SC ·M

minkt ≤ kt ≤ maxkt, ∀t ∈ T

(4)

The above minimization problem is as shown in [16] NP-complete and
the Step 4 of the proposed placement algorithm is a heuristic assignment
procedure that aims to minimize the overall network traffic cost.

5.5. Alternatives on the placement algorithm
In this section we describe an alternative assignment mechanism which

is similar to the Weighted Round Robin (WRR) scheduling discipline. In
Section 5.3 topics were assigned serially based on their weights. Particularly
the topic with the largest weight was assigned first, then the topic with the
second largest weight and so on. In the WRR alternative the sequence of
the assignment does not change but the number of storing points that each
topic is assigned to is based on its relative weight. The relative weight rwt

of topic t is rwt =
⌈ ∑N

i=1
rt
i

min{∀t∈T}
{∑N

i=1
rt
i

}⌉. This means that the rw of the

less weighted topic is equal to one. The rw of all topics generate an integer
vector of the form [rw1, rw2, ..., rwt] where rw1 is the relative weight of topic
1 and so on (e.g. [3 1 2 2] means that out of the four topics, topic 2 is the
the one with the smallest weight while topics 3 and 4 are twice as large as
topic 2 and topic 1 is the largest and its weight is three times larger than
topic 2). The WRR alternative of the assignment procedure assigns at each
round r

kr
t = min

{
rwt · kt, kt −

r−1∑
r′=0

kr′
t

}
where

k0
t = 0, ∀t ∈ T
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storages to each topic until all topics are assigned to kt different storages.
In the example of Figure 3, the vector of the relative weights of the topics

is [3 5 1]. Of course the assignment procedure of WRR alternative in that
example is the same to the assignment procedure described in Section 5.3
since kt = k = 2 but in the case that k = 6 then the assignment of WRR
would have been:
Round 1: [3 5 1] storages for each topic.
Round 2: [3 1 1] (topic 2 has already been assigned to 5 storages)
Round 3: [0 0 4] (topic 1 and 2 has been assigned to k = 6 storages).

The WRR alternative is more fair to the less weighted topics and as
shown in the performance evaluation this lead to better performance re-
garding the clients’ perceived delay and the overall network traffic.

6. Performance evaluation

In this section, we evaluate the proposed storing mechanism using a dis-
crete event simulator. N brokers are organized in a tree topology (common
topology in overlay pub/sub networks) and clients dynamically request on
each broker i for stored content with rate rt

i different for each topic t. We as-
sume that in our network exist T topics and based on the set of experiments
each topic should be either replicated at least minkt times or a predefined
number of M storages should be placed and appropriately assigned to the
topics. Also, each storage has a storage capacity of SC different topics. For
the purpose of this paper, we assume that there are no limits in the workload
(in requests/second) that each storage can serve. Finally the assignment of
replicas to the topics is based on their actual weight wt with the constraint
that at least minkt replicas should be assigned to each topic t.

It is widely acknowledged that content-based publish/subscribe research
lacks public data sets for meaningful evaluation. Thus, synthetic workload
generation is widely accepted in the field, under reserve that the workload
generated meets a set of realistic assumptions. Each topic is characterized
by two parameters: popularity and locality. Popularity refers to the request
rate related to a topic and locality to the region of the topology likely to
originate requests. Pt (respectively Lt) denotes the popularity (respectively
the locality) associated to a topic t. Popularity and locality values are
computed using a Zipf law of different exponents sp and sl respectively.
Requests are issued from a set of nodes computed using Lt. Particularly
Lt · N brokers are potential issuers of requests related to topic t. This set
of brokers is computed by choosing a random central node and Lt · N − 1
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additional nodes among the most closed nodes to the central node (executing
a Breadth First Search algorithm).
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Figure 4: Performance of the proposed placement algorithm (both assignment alternatives
“srl” and “wrr”) compared to the “grd opt” and the “rnd” vs. to the number of the brokers
in the network.

Having selected the M storages and assigned to them the T topics using
our two placement alternative algorithms for pub/sub networks (“p/s srl”
for the serial assignment process and “p/s wrr” for the weighted round
robin-like assignment process) we let the system operate under the dynamic
client environment. We compare it firstly to the case where each topic
is assigned to the kt storages produced by the first step of the placement
algorithm (“grd opt”) described in Section 5.3 disregarding of the storage
capacity and the total number M of used storages, and secondly to the case
where there is no differentiation among topics during the selection of the
M storages and the final assignment of the topics to kt storages is random
(“rnd”). The metrics we are interested in are:
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Figure 5: Performance of the proposed placement algorithm (both assignment alternatives
“srl” and “wrr”) compared to the “grd opt” and the “rnd” vs. to the storage capacity of
the storing points in the network.

• The overall network traffic, ONT (in req ·hops/sec) after the comple-
tion of the placement/replication algorithm.

• The mean hop distance which corresponds to the mean number of hops
between a responding storage and the client making the request. This
metric is indicative of the response latency as a function of hops in the
network.

We set two sets of experiments; one evaluating both the planning and
the assignment phases (see Section 5.4) of the proposed algorithm and one
evaluating only the reassignment of topics after an initial planning.

6.1. Overall evaluation of the placement/replication algorithm
In the first set of experiments we conducted two subsets of experiments

on assuming a predefined minimum replication degree for each topic and
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one assuming a predefined number of storages that should be installed in
the network.

6.1.1. Predefined replication degree
In this subset of experiments we assumed that the Zipf’s exponent value

of the popularity is sp = 1 while we assumed uniform locality among the
topics. Uniform locality implies that requests are generated from every node
in the network for every topic or else, the neighborhood of interest for each
topic is the whole network. We also assumed that minkt = mink = k = 2.
We mentioned above that the assignment is weighted based on the wt of
each topic, meaning that the number of replicas of each topic is given by
kt = wt

wt′
·mink where t′ ∈ T is the less weighted topic. Also in our network

exist T = 10 different topics and clients request rate per topic t is 25 · Pt

requests/second from each broker of the network. We particularly set three
different experiments, one varying the number of brokers in the network,
one varying the storage capacity of each potential storage and one varying
the minimum replication degree mink = k of the topics in the network.

Figures 4 - 6 show the mean hop distance and the overall network traffic
for each one of the three different experiments. The proposed algorithm
behaves better than the “rnd” algorithm (5% − 25% better performance)
and close to the “grd opt” (less than 10% worse), which does not have any
constraints regarding the storage capacity and the total number of installed
storages. This performance is achieved regardless on the size of the network,
the storage capacity of the storages or the minimum number of replicas in-
stalled for each topic. The mean hop distance and the ONT increases slower
to the increase of the size of the network (Figure 4) while increasing the
SC of every storage the two proposed alternatives and the “rnd” algorithms
install more topics in “privileged” brokers leading to smaller response de-
lays (and loading with less traffic the network) for every request (Figure 5).
Moreover, both the mean hop distance and the ONT are decreasing as the
minimum replication degree (k) for each topic increases, since now requests
reach closer storages (Figure 6).

The “wrr” assignment alternative behaves better than the “srl”, (4%−
17% better performance in every contacted experiment), since as explained
in Section 5.5 this alternative is more fair is the assignment of the topics.
This means that less popular topics still have the chance to select storages
that match their choices (Step 1 of the proposed algorithm) leading to better
performance the whole network. As observed by the Figures 5-6 the mean
hop distance and the ONT graphs have the same form since the storage
capacity of each storage point and the minimum replication degree of each
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Figure 6: Performance of the proposed placement algorithm (both assignment alternatives
“srl” and “wrr”) compared to the “grd opt” and the “rnd” vs. to minimum replication
degree of the topics in the network.

topic does not alter the overall amount of traffic (req/sec) generated in the
network, and the ONT is the product of the distance (from a client to the
closest storage) and the amount of requests generated by the clients of the
network. Of course, the addition of new brokers (and new clients attached to
them) increases the amount of traffic in the network and the mean distance
between clients and storages that’s why the ONT graph in Figure 4 behaves
differently from the mean hop distance graph.

6.1.2. Predefined total number of storages
In this subset, we set two different experiments, one assuming uniform

locality and vary the exponential sp of the popularity and one assuming
uniform popularity (sp = 0, Lp = L = 0.1 when T = 10 uniform popularity
means same request rate for each topic equal to 2.5 req/sec) and vary the

18



0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 01 , 5

2 , 0

2 , 5

3 , 0
 p / s _ s r l  M = 2 0
 p / s _ w r r  M = 2 0
 g r d _ o p t  M = 2 0
 r n d  M = 2 0
 p / s _ s r l  M = 1 0
 p / s _ w r r  M = 1 0
 g r d _ o p t  M = 1 0
 r n d  M = 1 0

me
an 

ho
p d

ista
nce

s p

T = 1 0 ,  S C = 5

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
4 0 0 0
4 5 0 0
5 0 0 0
5 5 0 0
6 0 0 0
6 5 0 0
7 0 0 0
7 5 0 0  p / s _ s r l  M = 2 0

 p / s _ w r r  M = 2 0
 g r d _ o p t  M = 2 0
 r n d  M = 2 0
 p / s _ s r l  M = 1 0
 p / s _ w r r  M = 1 0
 g r d _ o p t  M = 1 0
 r n d  M = 1 0

ON
T

s p

T = 1 0 ,  S C = 5

Figure 7: Performance of the proposed placement algorithm (both assignment alternatives
“srl” and “wrr”) compared to the “grd opt” and the “rnd” vs. to the exponent value sp

of the popularity.

exponential sl of the locality. Moreover we assumed that there are M = 20
and M = 10 available storages (SC = 5 for each storage) that should be
placed and assigned (based on the weights) to the T = 10 topics when the
network is composed by N = 100 nodes.

Figures 7 - 8 show the mean hop distance and the overall network traffic
for each one of the two experiments. As previously, the proposed algorithm
behaves better than the “rnd” algorithm and close to the “grd opt” when
the popularity exponent changes. Particularly the proposed algorithm per-
forms 10%−25% better than the random algorithm and less than 9% worse
from the greedy optimal algorithm, which has no limitations in the number
of installed storages and their storage constraints. On the other hand, in the
experiment of the changing locality exponent the proposed algorithm per-
forms at least four times worse than the “grd opt” but requires three times
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Figure 8: Performance and total number of installed storages in the network of the pro-
posed placement algorithm (both assignment alternatives “srl” and “wrr”) compared to
the “grd opt” and the “rnd” vs. to the exponent value sl of the locality.

less storages. So when the offered storages are predefined, the “grd opt”
cannot be used, the proposed algorithm (both the assignment alternatives)
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perform significantly good resulting on average 1.2 - 2.3 mean hop distance
on a network of 100 nodes when the offered storages are 20% and 10% of
the size of the network respectively and each storage point can store half of
the existing topics.

As previously, the mean hop distance and the ONT graphs have the
same form since both the popularity and the locality exponent do not alter
the overall amount of traffic (req/sec) generated in the network but only
the way that this amount of traffic is allocated among the topics and the
nodes of the network. For that reason the ONT graph is not depicted in the
following experiments.

6.2. Evaluation of the reassignment phase
In this set of experiments we evaluate only the reassignment phase of the

proposed algorithm (Step 4 in Section 5.3) after an initial planning of the
storages. Particularly we set two different experiments. In the first one we
assumed uniform locality and vary the popularity when the initial planning
was done assuming sp = −1 (the last topic in the most popular). In the
second experiment we assumed uniform popularity and vary the locality
when the initial planning was done assuming sl = −1 (the last topic was
requested from the largest neighborhood). Also there are M = 20 available
storages (SC = 5 for each storage) that should be placed and assigned
(based on the weights) to the T = 10 topics while the network is composed
by N = 100 nodes.

Figures 9 and 10 present the mean hop distance and the relative gain of
the reassignment process for the two proposed assignment alternatives. It is
obvious that the reassignment of topics manages to retain the good perfor-
mance of the network even if the popularity or the locality pattern radically
change. Particularly when the patterns of the popularity and the locality
are inverted the assignment phase by itself performs up to 55% decrease in
the mean hop distance compared to the case where the assignment of the
topics among the storages do not change after the initial planning. Moreover
the performance of the reassignment phase is less than 8% worse compared
to the performance of executing both the planning and the assignment steps
after the change of the popularity and the locality pattern (Figures 7 and 8).
Thus the performance of both the assignment alternatives makes them an
excellent heuristic approach to the minimization of the mean hop distance
(and the overall network traffic) presented in Section 5.4.

The relative gain graphs of Figures 9 and 10 could also be used as a
benchmark for the storage provider in his decision to reassign or not the
topics in the storages of the network upon the detection of a change in
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Figure 9: Performance and % gain of the assignment phase (both alternatives “srl” and
“wrr”) of the placement algorithm after an initial planning compared to the placement
algorithm without reassignment vs. to the evolution of the value of the popularity expo-
nent.

the popularity or the locality pattern. Particularly when the popularity
pattern (the exponent value sp) changes up to 50% from its initial value the
reassignment of the topics has less that 10% impact in the decrease of the
mean hop distance and the ONT. This means that a storage provider could
skip the reassignment of the topics since the initial planning and assignment
still performs quite good. On the other hand when the locality pattern
changes more than 25% from its initial value the reassignment phase is
necessary since it can decrease both the mean hop distance and the ONT
at least 15%.
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Figure 10: Performance and % gain of the assignment phase (both alternatives “srl” and
“wrr”) of the placement algorithm after an initial planning compared to the placement
algorithm without reassignment vs. to the evolution of the value of the locality exponent.

7. Conclusion And Future Work

In this paper, we put forward a new mechanism for storing in topic-based
pub/sub networks. The proposed concept equips the pub/sub with the abil-
ity to store and retrieve stored information. Moreover, we presented a new
placement and replication assignment algorithm that differentiates classes
of content. Evaluation via simulations that presents the performance of
the system regarding the clients response latency and the overall network
traffic shows that our placement/replication algorithm is less than 1%-15%
worse than the greedy approach installing up to 3 times less storages in the
network. Moreover the two proposed assignment algorithms could also be
used regardless of the initial planning of the storages to retain the good
performance of the network when both the locality and the quantity of the
requests change. Particularly the reassignment phase by itself performs less
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than 10% worse than re-planning and re-assigning. This work can be ex-
tended in many ways such as optimizing different objective functions serving
different QoS metrics and SLAs among the storage provider and the content
providers.

Acknowledgment

This work is an extended version of the [13] where an initial approach
on storing/replication in pub/sub networks is presented.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley and T. D.
Chandra, “Matching events in a content-based subscription system,” In
Proc. of 18th ACM PODC Atlanta, May, 1999.

[2] A. Carzaniga, D. Rosenblum and A. Wolf, “Design and evaluation of a
wide-area event notification service,” ACM Transaction On Computer
Systems, vol. 19, pp. 332–383, 2001.

[3] B. Segall and D. Arnold, “Elvin has left the building: A pub-
lish/subscribe notification service with quenching,” In Proc. of AUUG,
Brisbane, Australia, Sept. 3-5, pp. 243–255, 1997.

[4] G. Cugola and G. Picco, “REDS, A Reconfigurable Dispatching System,”
In Proc. of 6th Inter. workshop on Software Engineering and Middleware,
pp. 9–16, Oregon, 2006.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs,
R. Braynard, “Networking named content,” In. Proc. of the 5th ACM
CoNEXT, Rome, Italy, Dec. 1-4, 2009.

[6] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S.
Shenker, and I. Stoica, “A Data-Oriented (and Beyond) Network Archi-
tecture,” In Proc. of SIGCOMM, 2007.

[7] M. M Sarela, T. Rinta-aho, and S. Tarkoma, “RTFM: Publish/Subscribe
Internetworking Architecture,” In ICT-MobileSummit, 2008.

[8] http://www.fp7-pursuit.eu/PursuitWeb/
[9] http://www.4ward-project.eu/index.php?s=file download&id=39.
[10] Li G., Cheung A., Hou S., Hu S., Muthusamy V., Sherafat R.,

Wun A., Jacobsen H., and Manovski S., “Historic data access in pub-
lish/subscribe,” In of Proc. DEBS, pp. 80–84, Toronto, Canada, 2007.

24



[11] Sourlas V., Paschos G. S., Flegkas P. and Tassiulas L., “Caching in
content-based publish/subscribe systems,” in Proc of IEEE Globecom,
Honolulu, USA, Dec. 2009.

[12] V. Sourlas, P. Flegkas, G. S. Paschos, D. Katsaros and L. Tassiulas,
Storing and Replication in Topic-Based Publish/Subscribe Networks to
appear in IEEE Globecom, Miami, USA, Dec. 2010.

[13] B. Li, M. J. Golin, G. F. Ialiano and X. Deng, “On the Optimal Place-
ment of Web Proxies in the Internet,” In Proc. of INFOCOM, March
1999.

[14] I. Cidon, S. Kutten, R. Soffer, “Optimal allocation of electronic con-
tent,” In Proc. of INFOCOM, Anchorage, April 2001.

[15] J. Kangasharju, J. Roberts, K. Ross, “Object replication strategies in
content distribution networks”, Comput. Commun. Elsevier.

[16] L. Qiu, V.N. Padmanabhan and G. Voelker, “On the placement of web
server replicas,” In Proc. of IEEE INFOCOM, Anchorage, USA, Apr.
2001.

[17] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V.
Pandit, “Local search heuristics for k-median and facility location prob-
lems,” In Proc. of 33rd ACM Symp. on Theory of Computing, 2001.

[18] M. Charikar and S. Guha, “Improved combinatorial algorithms for facil-
ity location and k-median problems,” In Proc. of the 40th Annual IEEE
Symp. on Foundations of Computer Science, pp. 378-388, Oct. 1999.

[19] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan, “Facility loca-
tion with outliers,” In Proc. of the 12th Annual ACM-SIAM Symp. on
Discrete Algorithms, Washington DC, Jan. 2001.

[20] D.B. Shmoys, E. Tardos and K.I. Aardal, “Approximation algorithms
for facility location problems,” In Proc. of the 29th Annual ACM Symp.
on Theory of Computing, pp. 265-274, 1997.

[21] E. Cronin, S. Jamin, C. Jin, T. Kurc, D. Raz and Y. Shavitt, “Con-
strained mirror placement on the Internet,” in IEEE JSAC, 36(2), Sept.
2002.

[22] M. Karlsson, Ch. Karamanolis and M. Mahalingam, “A Framework for
Evaluating Replica Placement Algorithms”, http://www.hpl.hp.com/
techreports/2002/HPL-2002-21, 2002.

[23] R. Cohen, L. Katzir and D. Raz, “An Efficient Approximation for the
Generalized Assignment Problem,” Information Processing Letters, Vol.
100, pp. 162-166, Nov. 2006.

25


