Algorithms for Cloud Computing

part II: Resource Allocation and Fairness

Georgios Paschos

Resource Allocation

Sharing resources among users

- Each user receives a "satisfaction" from resources
- Maximize total satisfaction with available resources
- Caveat: might be unfair...

Outline

- Welfare maximization: find resource allocations for the system's benefit
- Fairness and its relation to welfare maximization
- Multi-resource fairness

Welfare Maximization

- Problem formulation:
- K: number of users

- x_{k} : allocated resources to user k
- X: set of feasible allocations (convex, bounded in positive orthant)
- U_{k} : utility of user k (increasing, concave)

$$
\max _{x \in \mathcal{X}} \sum_{k=1}^{K} U_{k}\left(x_{k}\right)
$$

- Convex solvers: project gradient, Lagrangian relaxation, dual ascent, ADMM, ...

Why care about welfare maximization?

- Question: why not just sell resources to the highest bidder?

A1: In some systems, we sell SLAs and use available resources to meet them. Welfare helps to distribute surplus, and/or de-risk failing SLAs

A2: Sometimes SLAs can not be met, how do we decide which ones to violate, and by how much?

A3: Even if you do sell, to sell everything and not loose money, you still need to understand welfare maximization

The beer example

- We have 1 lt of beer, two glasses of 700 ml , and user 2 is twice "thirsty" than user 1. $U(x)=x_{1}+2 x_{2}$
- Questions: Describe feasible set. What point maximizes welfare?

Pareto Efficiency

- Definition: A feasible allocation y is a Pareto improvement for x if $U_{k}\left(y_{k}\right) \geq U_{k}\left(x_{k}\right), \quad k=1, \ldots, K, \quad$ and $>$ for at least one
- Definition: A point is Pareto efficient if there is no Pareto improvement for it

Questions

- Two persons, 100 bananas. Characterize the Pareto frontier
- Two persons, 2 bananas, 2 apples. P1 likes bananas and dislikes apples, P2 the opposite. Frontier?
- Two persons, 2 bananas, 2 apples. P1 likes bananas and is indifferent to apples, P2 the opposite. Frontier?
- P1 values 1 banana = 2 apples, and P2 the opposite. Frontier?

Max-min fairness

- Definition: A feasible allocation x is Max-Min Fair (MMF) in set X if for any other y it holds:

$$
y_{m}>x_{m} \Rightarrow \exists n \neq m: y_{n}<x_{n} \leq x_{m}
$$

To improve the utility of user m, we must worsen the utility of a "poorer" user

Max-min fairness: claims

- Definition: A feasible allocation x is Max-Min Fair (MMF) in set X if for any other y it holds:

$$
y_{m}>x_{m} \Rightarrow \exists n \neq m: y_{n}<x_{n} \leq x_{m}
$$

To improve user m, we must worsen the allocation of a "poorer" user

- If X is convex, there exists a unique MMF
- Non-convex sets might have no MMF (see example)
- MMF is equivalent to max the minimum and subject to
 that, max the $2^{\text {nd }} \min$, etc..
- If "all equal" is Pareto, it is MMF

Alpha Fairness

- Family of concave utility functions

$$
g_{\alpha}(x)=\left\{\begin{array}{cl}
\frac{x^{1-\alpha}}{1-\alpha} & \text { if } \alpha \in[0,1) \cup(1, \infty) \\
\log x & \text { if } \alpha=1
\end{array}\right.
$$

- Strictly convex Welfare $\sum_{k=1}^{K} \frac{x_{k}^{1-\alpha}}{1-\alpha}=>$ unique solution for $\mathrm{a}>0$

Progressive Filling algorithm

- Increase iteratively allocation until reaching a bottleneck

Progressive Filling algorithm

- Increase iteratively allocation until reaching a bottleneck
- Step 1: fill up to 3
- User 1 = 3 (bottlenecked)

Progressive Filling algorithm

- Increase iteratively allocation until reaching a bottleneck
- Step 1: fill up to 3
- User 1 = 3 (bottlenecked)
- Step 2: fill up to 3.5
- User 2 and User 3 = 3.5 (bottlenecked)
- Algorithm stops

Progressive Filling algorithm

- Increase iteratively allocation until reaching a bottleneck
- Step 1: fill up to 3
- User 1 = 3 (bottlenecked)
- Step 2: fill up to 3.5
- User 2 and User 3 = 3.5 (bottlenecked)
- Algorithm stops

Thm: Progressive Filling converges to MMF.

Proportional fairness ($\alpha=1$)

- Definition: A feasible allocation x is Proportional Fair (PF) in set X if any other y has a negative average change: $\sum_{k} \frac{y_{k}-x_{k}}{x_{k}} \leq 0$

Equivalent to solving the welfare maximization for logarithms: $\max _{x \in \mathcal{X}} \sum_{k=1}^{K} \log \left(x_{k}\right)$

Multi-resource Fairness

- Two resources (CPU and memory)
-How to generalize fairness?

- Simple approach: "Dominant Resource Fairness"
- Each user has a dominant resource share
- Balance user shares with weighted MMF

Dominant Resource Fairness

- Two users:
- User A $\left(w_{11}, w_{12}\right)=(1,4)$
"4GBs for each CPU"
- User B $\left(w_{21}, w_{22}\right)=(3,1)$
"1GB for each 3CPUs"
- Total of 9CPUs and 18GBs

	\square User A \square User B	

- Dominant resource of user $1: 1 / 9,4 / 18$-> memory
- Dominant resource of user 2: 3/9, 1/18 -> CPU

No concept of
allocation yet

Dominant Resource Fairness

- Two users:
- User A $\left(w_{11}, w_{12}\right)=(1,4)$
- User B $\left(w_{21}, w_{22}\right)=(3,1)$
- Change variables to dominant resource
- $y 1=4 / 18^{*} x 1$
- $y 2=3 / 9 * x 2$
- Quiz: solve for max-min fairness on Y

Dominant Resource Fairness

- Two users:
- User A $\left(w_{11}, w_{12}\right)=(1,4)$
- User B $\left(w_{21}, w_{22}\right)=(3,1)$
- Change variables to dominant resource
- $y 1=4 / 18^{*} x 1$

- $y 2$ = 3/9*x2
for CPU, $x_{1}+3 x_{2} \leq 9$
for Memory, $4 x_{1}+x_{2} \leq 18$
for CPU, $y_{1}+2 y_{2} \leq 2$
for Memory, $6 y_{1}+y_{2} \leq 6$

Dominant Resource Fairness

- Two users:
- User A $\left(w_{11}, w_{12}\right)=(1,4)$
- User B $\left(w_{21}, w_{22}\right)=(3,1)$

100\%	\square User A \square User B	
	3 CPUs	12 GB
50\%		
0\%	6 CPUs	2 GB
0\%	$\begin{aligned} & \text { CPUs } \\ & \text { (9 total) } \end{aligned}$	$\begin{aligned} & \text { Memory } \\ & \text { (18GB total) } \end{aligned}$

- Solve:

$$
\begin{aligned}
& \max _{y \geq 0} \frac{y_{1}^{1-\alpha}}{1-\alpha}+\frac{y_{2}^{1-\alpha}}{1-\alpha} \\
& \text { s.t. } y_{1}+2 y_{2} \leq 2
\end{aligned} \longrightarrow \mathrm{y} 1=\mathrm{y} 2 \longrightarrow \mathrm{y} 1=\mathrm{y} 2=2 / 3 \longrightarrow \begin{aligned}
& \mathrm{x} 1=18 / 4^{*} 2 / 3=3 \\
& \mathrm{x} 2=9 / 3^{*} 2 / 3=6
\end{aligned}
$$

$$
6 y_{1}+y_{2} \leq 6
$$

User A: 3CPU, 12GB User B: 6CPU, 2GB

Questions?

paschosg@amazon.com

- For questions about the course
- For questions about internship opportunities
https://paschos.net/
- Course material \& relevant papers

