
Advanced Topics on Cloud Computing Spring 2021

Lecture 1: Resource Planning
Lecturer: Dr. Georgios Paschos Amazon

This lecture focuses on Resource Planning : reserving an amount of resources for future use. Pertinent questions
in the context of cloud computing include: (1) How many servers to install in a datacenter in order to meet a future
demand? (2) What is the storage, processing power and networking capability that would suffice for a customer
needs throughout a year? (3) How should we adjust the resources for a cloud service in order to meet changing
demands? In this lecture we begin with the newsvendor problem, the archetypical resource planning question. We
then discuss how forecasting affects planning, and present an elastic planning technique based on online learning.

1.1 The newsvendor problem

We purchase y units of a perishable good (think of newspapers, or croissants) at unit cost c, and sell at unit price
p; both c, p are known. There will be a demand for X units, where X is unknown at purchase phase, and modeled
by a random variable with known distribution. Given unsold goods perish at the end of the day, what is the choice
of y that maximizes the expected total reward?

The newsvendor problem is one of the most fundamental problems in operation research and applied economics.
It sets the basic dilemma of any resource planning problem: invest too much and waste resources, or invest too
little and loose sales.

Figure 1.1: Resource planning.

We will focus on the simple case where the resource comes in continuous quantities and the demand distribution
is differentiable everywhere.1

Newsvendor problem:
max
y≥0

pE[min(y,X)]− cy

The first term of the objective captures the expected profit from sales, while the second term captures the cost of
the entire investment. Suppose F is the cumulative distribution of the demand, i.e., F (x) = P(X ≤ x), and ϕ(x)
its derivative, which we assume it exists everywhere.

Lemma 1.1 The optimal newsvendor investment is given by the critical fractile formula:

y∗ = F−1
(
p− c
p

)
.

1When the resource comes in units, we need to further consider the optimization on a grid, however, in low dimensions it is possible
to use the presented continuous formulation and check which rounding to nearest integer works best. When the demand has probability
jumps, a more detailed proof is needed.

1-1

Lecture 1: Resource Planning 1-2

Figure 1.2: Selection of optimal investment in the newsvendor model: (blue) opportunity cost by expected missed
sales, (orange) investment cost, (green) total cost, (red) min-cost investment, which corresponds to max-reward.

Proof: By the Law of iterated expectations:

E[min(y,X)] = P(X ≤ y)E[min(y,X)|X ≤ y] + P(X > y)E[min(y,X)|X > y]

=

∫
x≤y

xϕ(x)dx+ (1− F (y))y

Its derivative simplifies to:

∂E[min(y,X)]

∂y
= yϕ(y) + (1− F (y))− yϕ(y) = 1− F (y). (1.1)

Note that the newsvendor objective is U(y) = pE[min(y,X)]− cy. Then using (1.1) we have U ′(y) = p− c− pF (y),
and U ′′(y) = −pϕ(y) ≤ 0. Hence, U is concave, and a necessary condition for y∗ to be optimal is U ′(y∗) = 0. This
yields F (y∗) = p−c

p , which inverted gives the result.

The newsvendor model is used to determine the resource plan that minimizes cost in expectation, when
the demand distribution is known and the costs are linear. In this case, the optimal investment is given by

F−1
(
p−c
p

)
.

1.2 Planning to a forecast

The newsvendor model assumed the demand is characterized by a known distribution. In reality, future demand
is predicted by means of forecasting. Below we introduce demand forecasting and provide some basic tools. A
beginner’s introduction can be found in [2].

1.2.1 Demand forecasting

We are given t− 1 historical values of demand, x1, x2, . . . , xt−1, and we are asked to forecast the future demand xt.
We denote our forecast with Ft. We may evaluate our forecast by making N rounds of forecasts Ft, . . . , Ft+N−1,
and compare those to the actual demand xt, . . . , xt+N−1. At each round, we compute the error Et (or residual)
using the equation: Et = Ft − xt. A helpful metric of forecast success is the Mean Absolute Percentage Error
(MAPE), defined as:

MAPE = 100 ·
∑t+N−1
i=t |Ei/xi|

N
.

The problem of demand forecasting is to develop a method to systematically produce Ft that minimizes MAPE.
Apart from evaluating MAPE, it is worthy to look at other residual diagnostics. The simplest test is the

average E = 1/N
∑t+N−1
i=t Ei. A forecast is said to be unbiased if E tends to 0 as N increases. A biased forecast

tends to err in a given direction and can be improved by de-biasing techniques. The histogram of residuals also
provides valuable information for optimization, and often fits a Normal or a t-student distribution. Finally, the

Lecture 1: Resource Planning 1-3

Auto-Correlation Function (ACF) of the residual sequence provides information to the forecaster as to whether
there exist seasonal components in the signal or other correlations. If there are correlations between residuals, then
there is information left in the residuals which should be used in computing forecasts. For example, this information
can be used to decompose the signal into seasonal and non-seasonal parts.
Naive forecast. The simplest possible forecast is to use the last value in the sequence:

Ft = xt−1.

This forecaster does not learn from the structure of our time-series, but it may perform well in situations of rapid
and unexpected growth. It can be used as a baseline.
Mean estimator. This forecast assumes that past and future actuals are drawn independently from the same
stochastic model.

Ft =
1

t− 1

t−1∑
i=1

xi.

In absence of periodic (or other type) structure, the mean estimator can turn out to be a good forecast, and is often
used due to its simplicity. If the actuals are seasonal, the mean estimator can also be adjusted to seasonality, e.g.,
we may have one estimator for weekdays and another for weekends.
Exponential smoothing. Sometimes we desire a prediction that is between the two extremes of naive and mean
estimator. Let α ∈ (0, 1) be a constant, we define the exponential smoothing forecaster to be:

Ft = αxt−1 + (1− α)αxt−2 + · · ·+ (1− α)t−2αx1.

Notice that this forecaster becomes the naive forecast as α → 1 and the mean estimator as α → 0. Values of α
close to 1 allow the forecaster to “forget” quickly.
Auto-Regressive Moving Average (ARMA). One way to apply linear regression to forecasting is by training
φ on a p-order auto-regressive model:

Ft = E[Ft] + Et + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p,

where Et is assumed to be zero-mean Gaussian. Further, it is possible to merge this model with a moving average
model, which similarly to the mean estimator averages past residuals:

Ft = E[Ft] + Et +

p∑
i=1

φixt−i +

q∑
j=1

θjEt−j ,

The best ARMA model can be trained on the data set by minimizing a forecasting error metric over φ, θ.
ARMA models are very popular statistical methods for time series forecasting, and can be further enhanced

using differencing/integration (ARIMA), and seasonality (SARIMA). An important question for an ARMA model
is the correct choice of p and q. This can be done either by checking stationarity of residuals or by using automated
algorithms such as auto-ARIMA.

Other interesting techniques left out of scope are neural networks with Long-Short Memory (LSTM), nearest
neighbors, multi-variate forecasting, and variational forecasting such as DeepAR [4].

The best forecasting model varies according to the problem, but flexible models such as ARIMA and DeepAR
are always a good place to start.

1.2.2 Robust planning

Sometimes, the objective of planning is simply to ensure that the resources are “enough”. Mathematically, such
an objective can be formulated as a chance constraint, targeting to limit the probability of resource outage to a
small controllable value. Suppose a distributional forecast representing the future resources needed by K cloud
computing users. The future demand of user k is expressed in the following way:

xk = E[Fk] + Ek,

Lecture 1: Resource Planning 1-4

where Fk is the forecast demand of user k and the residual Ek ∼ N (0, σ2), i.i.d. across users. Let ε be a small and
controllable constant.
Robust planning: Find the minimum resources y that keep the outage probability at most ε:

P (yk < xk) ≤ ε⇔ P (Ek > yk − E[Fk]) ≤ ε⇔ Q

(
yk − E[Fk]

σ

)
≤ ε⇔ yk ≥ E[Fk] + σQ−1(ε)

where, Q(.) is the tail distribution of standard normal. Intuitively, σQ−1(ε) represents a buffer for accomodating
uncertainty. This methodology generalizes to any stochastic optimization problem, and allows us to model chance
constraints as linear constraints [5].

Resource pooling is the idea of serving clients from a common pool of resources. Cloud computing technology
allows to build large datacenters, and then serve users flexibly by sharing resources among them. To demonstrate
the benefit, consider as before the case we want to cover the demand of each of K clients with same probability,
but this time we allow resource pooling. It then suffices to satisfy:

P

(∑
k

yk <
∑
k

xk

)
≤ ε⇔ P

(∑
k

Ek >
∑
k

yk −
∑
k

E[Fk]

)
≤ ε

⇔ Q

(∑
k yk −

∑
k E[Fk]√

Kσ

)
≤ ε

⇔
∑
k

yk ≥
∑
k

E[Fk] +
√
KσQ−1 (ε)

where we used the fact that
∑
k Ek ∼ N (0,Kσ2). We observe that the total required buffer reduced from KσQ−1(ε)

to
√
KσQ−1(ε). For K = 100, this represents a 90% reduction in the required buffer.

The uncertainty risk is best hedged by aggregating multiple plans.

1.3 Elastic Planning with Online Convex Optimization

We present an elastic planning methodology that can be used to adjust to a changing demand. The methodology
is designed to yield the best performance even when the future demand is engineered by an adversary to hurt our
plans.

At time t = 1, . . . , T a policy π chooses an investment plan yπt ∈ Y, buying yπt,k units of good k. The investment
returns a reward from an unknown function ft(y

π
t). Set Y is convex and functions ft, t = 1, 2, . . . , T are convex

with bounded gradients ‖∇ft‖≤ B, and we assume that function ft is revealed to the policy at the end of round t.

Cloud computing example

Suppose yπt,k ∈ [0, Xmax] denotes the amount of computing power planned for user k, and xt,k ∈ [0, Xmax] the
unknown demand of that user. The reward function adds a quadratic penalty whenever the demand exceeds the
planned resource:

ft(y
π
t) = −c

K∑
k=1

yπt,k −
K∑
k=1

(xt,k − yπt,k)21{xt,k>yπt,k},

where c is a weighting constant. For sufficiently small c, the above function is maximized by setting the plan just
above the demand of each user. Unfortunately, the demand is unknown, hence the algorithm has to additionally
learn how the demand evolves.

We define the static regret of π as the cumulative difference between the policy reward and the reward of the
optimal investment in hindsight :

Regπ(T) =

T∑
t=1

ft(y
∗)−

T∑
t=1

ft(y
π
t)

Lecture 1: Resource Planning 1-5

Figure 1.3: Elastic resource planning for cloud computing.

where y∗ = arg maxx∈Y
∑T
t=1 ft(x) is the investment in Y that maximizes reward when knowing all functions (a.k.a.

in hindsight). The regret will be a metric of how well our algorithm is performing, and we will look for a policy that
minimizes regret, or at least yields a regret which is sublinear to the horizon. If the latter is true for an algorithm,
it follows that as the horizon T increases, the average reward of the algorithm is as good as the best action in
hindsight.

The unknown functions can be interpreted as stochastic, or adversarial. In the latter case, an adversary observes
policy choice yπt , and then selects a function ft that worsens the regret. Although in most planning problems there
are no real adversaries, taking such an approach produces all-rounder algorithms that are robust to non-stationary
fluctuations, and also work well in situations of stationarity.

Problem solution

The standard policy for solving OCO problems is the projected Online Gradient Ascent (OGA) algorithm–proposed
in [6]. It chooses an initial vector y1 ∈ Y and iterates using:

zt+1 = yt + ηtgt, (1.2)

yt+1 = PY(zt+1), for t = 1, . . . , T − 1

where (i) gt is the gradient of ft at yt, (ii) ηt is the stepsize, and (iii) PY(y), is the Euclidean projection of y on set
Y. Let R be the diameter of Y and B be an upper bound on gradients, such that ‖gt‖≤ B, t = 1, . . . , T .

Theorem 1.2 (Regret of OGA) Fix stepsize η = R/(B
√
T), the regret of OGA satisfies:

RegOGA(T) ≤ RB
√
T .

Proof: Adapted from [7]. For any point y∗ ∈ Y we can expand the norm to write

‖zt+1 − y∗‖2 = ‖yt + ηgt − y∗‖2= ‖yt − y∗‖2+2ηgt
T (yt − y∗) + η2‖gt‖2

and by the non-expansiveness of the Euclidean projection, we can derive a bound on the distance of an algorithm
iterate from the best action in hindsight:

‖yt+1 − y∗‖2 = ‖PY(zt+1)− y∗‖2≤ ‖xt+1 − y∗‖2

= ‖yt − y∗‖2+2ηgt
T (yt − y∗) + η2‖gt‖2.

Summing telescopically over the horizon, we obtain:

‖yT − y∗‖2≤ ‖y1 − y∗‖2+2η

T∑
t=1

(gt
T (yt − y∗)) + η2

T∑
t=1

‖gt‖2.

Since the LHS is positive, re-arranging terms we obtain:

T∑
t=1

(gt
T (y∗ − yt)) ≤

R2

2η
+
ηTB2

2
. (1.3)

Lecture 1: Resource Planning 1-6

Since ft are concave, for any y ∈ Y it holds ft(y)− ft(yt) ≤ gtT (y − yt) and combining we deduce:

RegOGA(T) =

T∑
t=1

(ft(y
∗)− ft(yt)) ≤

T∑
t=1

(gt
T (y∗ − yt))

(1.3)
≤ R2

2η
+
ηTB2

2
.

Plugging in η = R/B
√
T , we obtain the result.

In [8] it was shown that a simple adversary using linear functions can force any policy π to suffer a regret:

Regπ(T) ≥ RB

2
√

2

√
T ,

which shows that OGA has optimal regret less a small constant. The best achievable regret can be improved if the
adversary is restricted to specific choices, e.g., using only strongly convex functions [9], while it may deteriorate if
the OCO problem includes adversarial time-average constraints, see [10, 11, 12]. A generalization of OGA is the
online mirror descent which can improve the constants of the regret related to the dimensions of set Y [7].

The online gradient is a simple online planning algorithm that is optimal in highly volatile environments.

OGA for Elastic Planning

The last step is to derive the gradient algorithm for our example. We begin by computing the directional derivative:

∂ft
∂yk

= −c+ 2(xt,k − yk)1{xt,k>yk} =

{
2δk(yk)− c if yk < xt,k,
−c otherwise

where δk(yk) = xt,k − yk is the amount of resource more than yk that would suffice to meet the demand in the

previous slot. The gradient is simply ∇ft(y) =
(
∂ft
∂y1

, . . . , ∂ft∂yK

)T
, and hence the algorithm is updating plan for user

k in the following way: {
yt+1,k = (yt,k + η(2δk(yk)− c))+ if yk < xt,k,

yt+1,k = (yt,k − ηc)+ otherwise.

1.4 Quiz

You are given a dataset that contains two months of Amazon tweets between 26/02/2015 and 22/04/2015. We
are working on a webserver application that processes these tweets, and which requires cloud resources. We would
like to plan such resources for the next week time at an hourly granularity. The cost of cloud resources is $0.1 per
tweet, and there is a user experience penalty equal to p(δ) = $0.5δ2, where δ ≥ 0 is the number of resources we
must urgently subscribe in case we are short.

Specifically, we are interested in the last week of data from 13/04/2015 until 19/04/2015, which we will use as
a testing week for our purposes. The task is to design a model that proposes an amount of resources to reserve
hourly for this week. You are asked to compare two techniques:

(a) An online gradient technique.

(b) An ARIMA forecast paired with a stochastic optimization approach.

Report back your findings, and ideas for further improvements if any.

References

[1] S. Axsäter, Inventory Control, Springer International Publishing, 3rd edition, 2015.

[2] R. J. Hyndman and G. Athanasopoulos, Forecasting Principles and Practice, OTexts: Melbourne, Australia.
OTexts.com/fpp2, 2nd edition, 2018.

Lecture 1: Resource Planning 1-7

Figure 1.4: Public dataset with tweets from 26/02/2015 to 22/04/2015.

[3] T. Gneiting, F. Balabdaoui, and A. Raftery, Probabilistic forecasts, calibration and sharpness, Springer Interna-
tional Publishing, hal-00363242, 2007.

[4] https://ts.gluon.ai/

[5] D. Bertsimas, D. Brown, and C. Caramanis, Theory and applications of robust optimization, SIAM review 53.3,
464–501, 2011.

[6] M. Zinkevich, Online Convex Programming and Generalized Infinitesimal Gradient Ascent, 2003.

[7] V. Belmega, P. Mertikopoulos, R. Negrel, and L. Sanguinetti, Online Convex Optimization and No-Regret
Learning: Algorithms, Guarantees, and Applications, arXiv:1804.04529v1, Apr. 2018.

[8] J. Abernethy, P. Bartlett, A. Rakhlin, and A. Tewari, Optimal strategies and minimax lower bounds for online
convex games, 2008.

[9] E. Hazan and K. Satyen, Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-
convex optimization, The Journal of Machine Learning Research 15.1, 2489–2512, 2014.

[10] S. Mannor, J. Tsitsiklis, and J. Yuan Yu, Online Learning with Sample Path Constraints, Journal of Machine
Learning Research, 10.3, 2009.

[11] M. Neely and H. Yu, Online convex optimization with time-varying constraints, arXiv preprint
arXiv:1702.04783, 2017.

[12] N. Liakopoulos, A. Destounis, G. Paschos, T. Spyropoulos, and P. Mertikopoulos, Cautious regret minimization:
Online optimization with long-term budget constraints, ICML, pp. 3944-3952. 2019.

https://ts.gluon.ai/

	The newsvendor problem
	Planning to a forecast
	Demand forecasting
	Robust planning

	Elastic Planning with Online Convex Optimization
	Quiz

