
Advanced Topics on Cloud Computing Spring 2021

Lecture 2: Resource Allocation and Fairness
Lecturer: Dr. Georgios Paschos Amazon

This lecture focuses on Fair Resource Allocation: we must allocate resources to K users, what is the best
allocation? We provide a fairness framework for studying this important question for cloud computing systems.

2.1 Introduction to Resource Allocation

In a system with K users we use xk to denote the amount of resource allocated to user k; the allocation is then a
vector x = (xk)k=1,...,K . For example, x = (5, 2, 3) may indicate that we allocate 5 VMs to user 1, 2 VMs to user
2, and 3 VMs to user 3. The set X contains all feasible allocations and is called the feasibility region. For example,
the plot below provides set X when we have two users and 10 units of resources, and we must satisfy x1 + x2 ≤ 10,
while each user can receive at most 8 units.

Figure 2.1: Feasible set of allocations.

The satisfaction of user k from receiving xk resources is described by the utility function Uk : R+ → R+. We
seek to find the optimal resource allocation (x∗1, . . . , x

∗
K) as the solution to the welfare maximization problem:

Welfare maximization:

max
x∈X

K∑
k=1

Uk(xk). (2.1)

Our blanket assumptions are:

• Set X is bounded and restricted to the positive orthant: xk ≥ 0, k = 1, . . . ,K.

• Utilities are non-decreasing, Uk(x1k) ≥ Uk(x2k) if x1k > x2k, k = 1, . . . ,K.

• Utilities are concave.

• Set X is convex.

First some explanations about the assumptions. The set is bounded since resources are in general finite, and
allocations are non-negative as we cannot allocate negative resources. The utility functions are non-decreasing due
to the logic that more resources can not harm satisfaction, while they are concave due to diminishing returns: the
incremental value of resources becomes smaller as the allocation increases. For instance, an extra 1Mbps of Internet
speed is very important for a user when the allocated connection speed is 1Mbps, but not so when it is 500Mbps.
Finally, the set X is assumed convex for simplicity. Non-convex resource allocation problems are encountered in
practice, but left out of scope. We mention that such problems are often solved by convexification.

2-1



Lecture 2: Resource Allocation and Fairness 2-2

The resource allocation problem is a constrained convex optimization problem and can be solved using any of
the available convex algorithms, e.g., projected gradient ascent (lazy or greedy), interior point method, ADMM,
etc.

Most resource allocation problems can be stated as welfare maximization problems.

2.2 What is fairness?

Fairness has been a subject of philosophical studies since the era of Plato. Here we reduce the scope to an engineering
explanation in the setting of resource allocation. Consider three persons sitting in a bar and deciding how to share
a pitcher of 1lt of beer.1 They inevitably face the question “what is a fair way to allocate the beer?” A simple
answer is share 1lt of beer equally (1000/3, 1000/3, 1000/3). However the answer may become less trivial if we add
further detail:

• Each person has a different glass. Then an allocation (500, 250, 250) that barely fills the corresponding glasses
would be optimal.

• Third person does not want to drink more than 100ml. Then an allocation (450, 450, 100) may seem fair to
many.

• Second person is extremely thirsty. Then an allocation (300, 400, 300) might be fair to some who think that
a thirsty person deserves to drink more.

When sharing cloud computing resources, these questions become very relevant, and involve contractual agreements,
urgent needs for scaling up resources, limits of consumption, and deciding how to allocate multiple resources. Below,
we provide a mathematical framework to address these questions methodologically.

2.2.1 Pareto efficiency

In resource allocation we experience competition for resources; one user can get more satisfaction if another gets
less. There exist, however, suboptimal allocations in set X from where several users can improve without any user
loosing utility. To classify allocations accordingly we introduce the concept of Pareto efficiency.

Given an initial allocation x ∈ X , a Pareto improvement for x is another allocation y ∈ X where some users
improve their utilities, but no users decrease their utility. It should hold:

Uk(yk) ≥ Uk(xk), k = 1, . . . ,K,

and the inequality is strict for at least one user. In our beer example, if the current allocation is (250, 125, 125)
filling the glasses half-way, we can obtain a Pareto improvement by pouring more beer to any person.

We say that an allocation x ∈ X is Pareto efficient if it admits no Pareto improvement. Furthermore, the
set of all Pareto efficient solutions is called Pareto frontier, see fig. 2.2. Practically speaking, solutions that are not
Pareto efficient should be avoided, in the sense that they can be improved without harming anyone. Indeed, we
have the following result.

Claim 2.1 Let x∗ be a solution to the welfare maximization problem (2.1). Then x∗ is Pareto efficient.

One can prove the claim by showing that the total welfare can be improved by a Pareto improvement. Hence, a
welfare maximal allocation is always Pareto efficient. As explained below, by selecting a fairness objective, we may
choose among many Pareto efficient allocations which is the best.

Pareto efficient allocations are candidate solutions to fairness objectives.

1Peculiar thing about the author: he is allergic to beer.



Lecture 2: Resource Allocation and Fairness 2-3

Figure 2.2: (left) A convex set with the Pareto frontier and its unique Max-Min Fair (MMF) point. (right) A
non-convex set with no MMF point.

2.2.2 Max-min fairness

We say that x ∈ X is max-min fair if for any y ∈ X it holds:

ym > xm ⇒ ∃ n 6= m : yn < xn ≤ xm.

Therefore, if x is max-min fair, any allocation y that would improve the utility of a user m, would also deteriorate the
utility of another user n that was originally no richer than m. Max-min fairness captures the concept of egalitarian
fairness, where each user receives as equal resources as possible.

Q: Why do we need the xn ≤ xm instead of just xn < xm? For y to be an allocation that disproves x is max-min
fair, it has to improve a user only at the cost of richer users, i.e., y should be a Pareto improvement for x for all
users that are poorer or equal to m.

Claim 2.2 If X is convex, a max-min fair vector exists and is unique, see [1]. We will call it xMMF .

Claim 2.3 Let 1 be a K-dimensional vector of ones, if β1 is Pareto efficient, then it is also max-min fair.

Max-Min fairness is the objective of sharing resources in a way as equal as possible, while still Pareto efficient.

2.2.2.1 Progressive filling algorithm

We describe an iterative algorithm that progressively modifies allocations such that they converge to the max-
min fair allocation. The algorithm allocates resources to all users to marginally increase their utility equally,
progressively eliminating users from options when they reach their maximum allowable allocation. In [3], the
algorithm is presented in a network setting.

At iteration i of the algorithm, the allocation is denoted with x(i). The next allocation is:

x
(i+1)
k =

{
x
(i)
k + η(i) ∂Uk(x

(i))
∂x(i) if x

(i)
k < xmax

k

x
(i)
k if x

(i)
k ≥ xmax

k

where η(i) is a stepsize chosen to be sufficiently small to detect when allocations hit maximum.

Claim 2.4 If X is convex, the progressive filling algorithm converges to xMMF .



Lecture 2: Resource Allocation and Fairness 2-4

2.2.2.2 Alpha fairness

Finding xMMF can be cast as a lexicographic maximization problem, where we maximize the utility of the worse-off
user, and then subject to that maximizing the utility of second worse-off user, and so on, [2]. For convex sets, there
is a simpler way to find max-min fair vectors. For parameter 0 ≤ α <∞, define the family of concave alpha-fair
functions:

gα(x) =

{
x1−α

1−α if α ∈ [0, 1) ∪ (1,∞)

log x if α = 1

Lemma 2.5 Let x∗(α) be the solution to the welfare maximization problem (2.1) when Uk(xk) = gα(xk), then:

lim
α→∞

x∗(α) = xMMF .

The proof is provided in [4].

Practically speaking, maximizing
∑K
k=1

x1−α
k

1−α for large values of α allows us to approximate the max-min fair resource
allocation by the solution to the welfare maximization problem.

We note that for α = 0, the objective of Alpha fairness becomes to maximize
∑
k xk, corresponding to the

maximum total system efficiency. For interim values of α we obtain a spectrum of other fairness objectives.
Technically speaking, for α > 0, the alpha fair functions are strictly convex, leading to unique solutions on

convex set X .

2.2.3 Proportional fairness

In max-min fairness we aim to allocate to users as equal resources as possible. Sometimes this has adverse effects
in the efficiency of a system, because the resources for some users are much more expensive than others. A typical
example is that of wireless communication systems, where a poorly located user (e.g. situated at the cell edge, or
in a garage) can require a very large time allocation from the scheduler in order to receive a transmission rate equal
to other users. In such situations, a practical desirable condition is to skew the allocation to provide more resources
to favorable users, but avoid starving the unfavourable ones.

We say an allocation x ∈ X is proportional fair (PF) if for any other allocation y ∈ X the sum of proportional
changes is non-positive: ∑

k

yk − xk
xk

≤ 0. (2.2)

for all users m,n for which the allocation is not maximal. The proportionally fair vector is also the solution to the
problem:

max
x∈X

K∑
k=1

log(xk). (2.3)

Notice, that this corresponds to Alpha fairness for α = 1. As a result, we have that PF allocation exists and it is
unique.

Proportional fairness (α = 1) is a compromise between maximum system efficiency (α = 0) and egalitarian
fairness (α → ∞), often pursued in systems where equality may come at a very high price (e.g. in wireless
downlink systems).

Example

Find the PF allocation when a user consumes double the resources from the other for the same allocation, and there
is in total 1 unit of resources.

Assuming user 1 is the user that wastes resources, we may express the set of feasible allocations as:

X =
{

(x1, x2) ∈ R2
+ | 2x1 + x2 ≤ 1

}
.



Lecture 2: Resource Allocation and Fairness 2-5

Consider the Lagrangian function:

L(x1, x2, λ) = log x1 + log x2 + λ(2x1 + x2 − 1)

From Karuhn-Kush-Tucker conditions, at optimality the first-order optimality conditions for the Lagrangian must
be satisfied. This yields:

∂L

∂x1
= 0⇔ 1/x1 + 2λ = 0⇔ x1 = −1/(2λ)

∂L

∂x2
= 0⇔ 1/x2 + λ = 0⇔ x2 = −1/λ

∂L

∂λ
= 0⇔ 2x1 + x2 = 1⇒ −2/λ = 1⇒ λ = −2

Since the welfare optimization for proportional fairness (maxx∈X log x1+log x2) is a strictly convex maximization, it
has a unique solution, which is (x∗1, x

∗
2) = (1/4, 1/2). Instead, it is not hard to see that the MMF point is (1/3, 1/3),

while the sum of resources can be maximized at (0, 1).

Figure 2.3: Three different allocations achieved via solving the welfare maximization for alpha-fair utilities, Max-Min
Fair (α→∞), Proportionally fair (α = 1) and max sum (α = 0).

Finally, for PF (1/4, 1/2), MMF (1/3, 1/3), and max total z = (0, 1) we verify (2.2):

1/3− 1/4

1/4
+

1/3− 1/2

1/2
= 1/3− 1/3 = 0

0− 1/4

1/4
+

1− 1/2

1/2
= −1 + 1 = 0

2.3 Multi-resource fairness

In cloud computing, users may require more than one resource, e.g., memory and CPU. User k = 1, . . . ,K has a
requirement for wkj amount of resource j. Let xk denote its allocation. We have available cj resources for type
j. A fundamental question in cloud computing is to determine the best allocation x that additionally ensures the
capacities are not exceeded, i.e.,

∀j
∑
k

wkjxk ≤ cj .

Let us take a look at a simple toy example from [5]. There are two users with requirements (w11, w12) = (1, 4),
and (w21, w22) = (3, 1), indicating that first user needs more memory (4GB for each CPU) and the second needs
more CPU (3CPUs for each 1GB). As the figure shows, we have a server system with 9CPUs and 18GB of memory,
and we must decide how to split these resources to the two users.



Lecture 2: Resource Allocation and Fairness 2-6

Figure 2.4: Example of resource allocation in cloud computing from [5].

We introduce the concept of Dominant Resource Fairness [5] which is the prevalent approach used in the
industry. For user k, we say jk is the dominant resource if jk ∈ arg maxj wkj/cj . Then, let yk = wkjkxk/cjk be the
dominant resource allocation for user k. We say x is Dominant Resource Fair , if y is max-min fair.

Dominant Resource fairness is the objective of sharing multiple resources such that the dominant resource
for each user is scaled in an as equal as possible.

In the simple example presented before, we work as follows. First, we determine the dominant resource for each
user:

for user 1,
w11

c1
=

1

9
, and

w12

c2
=

2

9

for user 2,
w21

c1
=

3

9
, and

w22

c2
=

1

18

hence CPU for user 1 and memory for user 2. It follows that y1 = 2x1/9 and y2 = 3x2/9. Also, we must satisfy the
capacity constraints for the two resources:

for CPU, x1 + 3x2 ≤ 9

for Memory, 4x1 + x2 ≤ 18

which are equivalent to

for CPU, y1 + 2y2 ≤ 2

for Memory, 6y1 + y2 ≤ 6

Finally, the DRF vector can be recovered by solving the following welfare maximization:

max
y≥0

y1−α1

1− α
+
y1−α2

1− α
s.t. y1 + 2y2 ≤ 2

6y1 + y2 ≤ 6

for a limiting value of α. For our special toy problem, we can also apply an alternative technique. First we restrict
the above problem to the line y1 = y2 = y. Observe that the two constraints become y ≤ 2/3 and y ≤ 6/7, hence
the solution to the restricted (to the line) problem is (y1, y2) = (2/3, 2/3). Then, we can show that this solution is
Pareto efficient (an improvement results at deterioration of the other user), and use Claim 2.3 to prove that this is



Lecture 2: Resource Allocation and Fairness 2-7

the MMF point. Finally, the DRF point is obtained by back substituting, and it is equal to (x1, x2) = (3, 3). The
allocation is then 3 CPUs and 12 GBs for user 1 and 6 CPUs and 2 GBs for user 2. This is the allocation shown
in the figure.

2.4 Quiz

In a caching application, we are given enough storage to cache 100 videos. The cache hit probability for video m
is given by hm = 1− eλmtm , where λm is rate of requests (popularity), and tm is a tunable parameter. For the hit

probabilities it must be that hm ∈ [0, 1] and
∑M
m=1 hm = B, where B = 100 and M = 1000. The latter constraint

implies that the tunable parameters tm are such that the cached videos always fit in the available storage.
The different videos are not equally important. We assume that the video’s important is related to its rank in

the following manner: wm = 1/m. We desire to select the tunable parameters in order to achieve weighted max-min
fairness. Use cvxopt to plot the hit probability distributions that correspond to this solution.

Solution. The utility for hitting video m is Um = (wm · hm)1−α/(1 − α). Collectively the total utility is

U =
∑M
m=1(wm · hm)1−α/(1− α), therefore to find the weighted max-min fair point we should solve the following

convex optimization problem:

max
h∈[0,1]M

M∑
m=1

(wm · hm)1−α/(1− α)

s.t.

M∑
m=1

hm = B.

We make the change of variables zm = wm · hm and observe that we are optimizing z over a tilted simplex
and the positive orthant, hence the “all equal solution” is achievable, and hence it is the max-min fair point,
z1 = z2 = · · · = zM . It follows:

M∑
m=1

mzm = B ⇔ z∗
M∑
m=1

m = B ⇔ z∗ = 2B/(M(M + 1).

Hence

h∗m =
2mB

M(M + 1)
,

and

t∗m =
1

λm
log

1

1− h∗m
.

References

[1] B. Radunovic and J.-Y. Le Boudec, A Unified Framework for Max-Min and Min-Max Fairness with Applications,
Allerton, 2002.

[2] D. Nace and M. Pioro A Tutorial on Max-Min Fairness and its Applications to Routing, Load-Balancing and
Network Design, 2006.

[3] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 1992.

[4] J. Mo and J. Walrand, Fair End-to-End Window-based Congestion Control, IEEE/ACM Transactions on Net-
working, 8(5), pp. 556–567, 2000.

[5] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica, Dominant Resource Fairness:
Fair Allocation of Multiple Resource Types, NSDI, 2011.

[6] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, Multi-Resource Allocation: Fairness-Efficiency Tradeoffs in a
Unifying Framework, Transactions on Networking, 2012.



Lecture 2: Resource Allocation and Fairness 2-8

[7] T. Bonald and J. Roberts, Multi-Resource Fairness: Objectives, Algorithms and Performance, ACM Sigmetrics,
2015.


