
Advanced Topics on Cloud Computing Spring 2021

Lecture 3: Load Balancing
Lecturer: Dr. Georgios Paschos Amazon

This lecture focuses on Load Balancing : jobs arrive at a cloud computing system, and we must select for each
one an available server. What are the best practices for routing these jobs?

3.1 Offline Load Balancing: Makespan Minimization

We begin by modeling the scheduling of a fixed set of jobs in a multiprocessor environment. The problem statement
is: “Given J jobs, where job j has processing length lj , and S identical servers, what is the minimum possible time
required to finish execution of all jobs?” There are several constraints:

• A server can only work on one job at a time.

• A job, once started, must run to completion.

Figure 3.1: Assignment of jobs to servers.

3.1.1 Problem formulation and complexity

Let xjs be 1 if job j is assigned to server s and 0 otherwise. The total length of jobs at server s is called makespan
of server s, and is equal to:

Ts =

J∑
j=1

xjslj .

Define also an auxiliary variable t which will play the role of the maximum total length. The multiprocessor
scheduling problem can be defined as:

3-1

Lecture 3: Load Balancing 3-2

Minimum makespan problem:

min
x,t

t (3.1)

s.t. Ts =

J∑
j=1

xjslj , ∀s

t ≥ Ts, ∀s.

3.1.2 Greedy approximation

The Greedy algorithm inspects the jobs one by one, and assigns it to the server with the least length so far.

Theorem 3.1 Suppose t∗ is the minimum value of (3.1), and tG the makespan of Greedy. We have:

tG ≤ 2t∗.

Proof: We first observe that the minimum makespan is larger than maximum job length t∗ ≥ maxj lj . Also, the

LP relaxation is a lower bound, hence, t∗ ≥ 1
S

∑J
j=1 lj .

W.l.o.g. assume server s has maximum load in Greedy, and j was the last assigned job in that server. Every
other server must have at least as much total length as Ts − lj , hence Ts − lj ≤ 1

S

∑J
j=1 lj . It then follows:

tG = Ts = (Ts − lj) + lj

≤ 1

S

J∑
j=1

lj + lj

≤ 2t∗

The above algorithm can improve to a 4/3–approximation by ordering first the jobs in a decreasing length.
Finally, although the problem is NP-hard, there exist Fully Polynomial Time Approximation Schemes (FPTAS) for
this problem [6].

3.2 Online Load Balancing

We consider a system with S servers and one load balancer, as in Fig. 3.2. Time is slotted t = 1, 2, Server s
can process µs number of jobs per slot. At slot t the load balancer receives A(t) new jobs; A(t) ∈ N is i.i.d., with
E[A(t)] = a and E[A2(t)] < ∞. The load balancing policy selects any one server from {1, . . . , S} to route the
arriving jobs. Let dπs (t) = 1 if A(t) jobs are added to server s.

Figure 3.2: Load Balancing system for S = 3 servers.

To track the remaining number of jobs at server s, we can use the queue-update equation:

Qs(t+ 1) ≤ [Qs(t)− µs]+ +A(t)dπs (t). (3.2)

Lecture 3: Load Balancing 3-3

where queue length Qs(t) expresses the remaining work of server i and constitutes a Markov process. We use the
notation [.]+ = max(0, .). We say that server s is strongly stable if:1

limT→∞

∑T
t=1Qs(t)

T
= 0.

The queue length of a server Qs(t) is indicative of the delay that jobs experience when routed to that server. If
the server is strongly stable, its queue length may grow arbitrarily large, but it also becomes empty frequently and
the job delay is finite. Hence, a first-order performance indicator of a load balancing policy is to keep all servers
strongly stable.

3.2.1 Load Balancing Capacity

The capacity of a load balancing system is a value amax such that for any a < amax we may guarantee the existence
of a load balancing policy that can keep all servers stable.

Theorem 3.2 (Capacity Upper Bound) Suppose a >
∑S
s=1 µs, and consider any load balancing policy, the

system is unstable. Therefore,
∑S
s=1 µs is an upper bound on capacity.

Proof: Fix any ε > 0 such that a =
∑S
i=1 µi + ε. First, sum up telescopically (3.2) from t = 0 up to T :

Qs(T) ≥ Qs(0) +

T∑
t=1

A(t)1{s=d(t)} −
T∑
t=1

µs,

where inequality follows from not applying the [.]+ operator. Then assuming the system starts empty (Qs(0) = 0),
summing up for all servers, we have for all T :

S∑
s=1

Qs(T) ≥
T∑
t=1

(
A(t)−

S∑
s=1

µs

)
.

Summing up to T , dividing by T and taking limit, we obtain:

limT→∞

∑S
s=1Qs(T)

T
≥ limT→∞

∑T
t=1

(
A(t)−

∑S
s=1 µs

)
T

= a−
S∑
s=1

µs = ε > 0.

Since no queue can be made negative, there must be at least one s for which limT→∞

∑T
t=1Qs(t)

T > 0.

3.2.2 Join the Shortest Queue

The algorithm Join the Shortest Queue (JSQ) routes the newly arrived jobs to the server with the smallest queue:

dJSQs (t) ∈ arg mins∈{1,...,S}Qs(t).

Theorem 3.3 (JSQ is maximally stable.) If the mean traffic satisfies a <
∑S
i=1 µs, and the jobs are dispatched

according to JSQ, then the system is strongly stable.

Proof: First, there exist a stationary probabilistic allocation d∗s and ε > 0 such that ad∗s = µs − ε. Define the
Lyapunov function to be the squared norm of the queue length vector L(x) = 1

2

∑
s x

2
s. The Lyapunov drift is the

conditional evolution of the Lyapunov function:

∆(t) = E[L(Q(t+ 1))− L(Q(t))|Q(t)] =
1

2

∑
s

E[Q2
s(t+ 1)−Q2

s(t)|Q(t)]

1A technical note: load balancing policies may not be stationary, hence the induced queue lengths may not have a limit. In such
cases, we must replace the limit in the definition of stability with the limit of supremum, see [3] for a detailed treatment. In this lecture,
we restrict admissible policies to be stationary; it has been shown that in most situations, restricting to stationary policies does not
compromise optimality.

Lecture 3: Load Balancing 3-4

Using (3.2) we may infer that

Q2
s(t+ 1)−Q2

s(t) ≤ µ2
s +A2(t)dJSQs (t)− 2Qs(t)(µs −A(t)dJSQs (t))

Taking conditional expectation, we obtain:

∆(t) =
1

2

∑
s

E[Q2
s(t+ 1)−Q2

s(t)|Q(t)]

=

∑
s µ

2
s + a2

2
−
∑
s

Qs(t)(µs − adJSQs (t)).

Finally, observe that JSQ is minimizing the term
∑
sQs(t)d

JSQ
s (t). Hence, we can write:∑

s

Qs(t)ad
JSQ
s (t) ≤

∑
s

Qs(t)ad
∗
s =

∑
s

Qs(t)(µs − ε)

where d∗s(t) is the decision of the stationary randomized policy that splits flow a to servers such that ad∗s = µs − ε.
Combining we obtain:

∆(t) =

∑
s µ

2
s + a2

2
−
∑
s

Qs(t)(µs − adJSQs (t))

≤ B − ε
∑
s

Qs(t).

where B is constant larger than (
∑
s µ

2
i + a2)/2. Hence, whenever

∑
iQi(t) > B/ε, the Lyapunov drift is negative,

which by Lyapunov theorem implies that the Markov chain is stable.
What is remarkable about JSQ is that this simple Greedy rule can stabilize the server system whenever the

arrivals are less than the capacity, without knowing the value of the randomness of the arrivals.
The above framework generalizes to (1) multiple load balancers interconnnected to servers via a bipartite graph,

or (2) a network of queues, see the backpressure algorithm [1]. The work in [2] extends JSQ to respond to overload.
See [3] for a framework that extends the maximal stability to optimization, and [4] for analysing the asymptotic
behaviour of JSQ in fluid and diffusion limits.

3.3 The power of 2 choices

Despite the simplicity of JSQ, many server systems are so large and so fast, that in fact checking the queue state
of each server whenever a new job arrives may harm their performance. In this section, we discuss an unexpected
result due to [5], saying that we can limit our checks to only two server queues.

First, consider an experiment where we have n balls and each one is thrown randomly and independently at one
of the available m bins.

Theorem 3.4 (Balls into bins) With high probability (w.h.p.) the maximum number of balls in a bin is O(logn
log logn).

Proof: Applying union bound, we can characterize the probability of the overload event B ≥ k:“there is a server
with load more than k”:

P(B ≥ k) ≤
m∑
i=1

P(Bi ≥ k) = mP(Bi ≥ k),

where Bi is the number of balls in bin i, which is binomially distributed, P(Bi = j) =
(
m
j

) (
1
m

)j (
1− 1

m

)n−j
. Using

Lecture 3: Load Balancing 3-5

Sterling’s approximation (a):

P(Bi ≥ k) =

m∑
j=k

(
m

j

)(
1

m

)j (
1− 1

m

)n−j

≤
m∑
j=k

(
m

j

)(
1

m

)j
(a)

≤
m∑
j=k

(
me

j

)j (
1

m

)j
=

m∑
j=k

(
e

j

)j
≤

m∑
j=k

(e
k

)j
=

m−k∑
j=0

(e
k

)j+k
≤
(e
k

)k ∞∑
j=0

(e
k

)j
=
(e
k

)k 1

1− e/k
= Θ

(
1

kk

)

In order to obtain our scaling law, we would like to choose some k for which P(B ≥ k) ≤ m
nt , which we could achieve

using 1/kk ≤ 1/nt, or k log k ≥ t log n. Pick t > 1 and k = t logn
log logn , we then have that:

k log k =
t log n

log log n
(log t log n+ t log log n− log log log n) ≥ t log n(t+ log t log n) ≥ t log n

This proves that:

P
(
B ≥ t log n

log log n

)
= O

(m
nt

)
, for any constant t > 1,

and hence the probability becomes arbitrarily small for large n proving the result.
Then, repeat the same experiment, but this time, place each ball by picking two random bins, and assigning the

ball to the one with the least number of balls.

Theorem 3.5 (Power of 2 choices) With high probability (w.h.p.) the maximum number of balls in a bin is
O(log log n).

For proof see [5]. The remarkable observation is that the two random choices provide an exponentially better load
balancing result. This observation inspired many load balancing algorithms of the type: “Upon the arrival of a job,
sample at random d servers, and route the job to the server with the smaller queue length”.

References

[1] L. Tassiulas and A. Ephremides, Stability Properties of Constrained Queueing Systems and Scheduling Policies
for Maximum Throughput in Multihop Radio Networks, IEEE Trans. On Automatic Control, 1992.

[2] C.-P. Li, G. Paschos, L. Tassiulas, and E. Modiano, Dynamic Overload Balancing in Server Farms, IFIP
Networking, 2014.

[3] M. Neely, Stochastic network optimization with application to communication and queueing systems, Synthesis
Lectures on Communication Networks, 2010.

[4] M. van der Boor and S. Borst, Scalable load balancing in networked systems: A survey of recent advances,
arXiv1806.05444, 2018.

[5] M. Mitzenmacher, The Power of Two Choices in Randomized Load Balancing, P.h.D. thesis, Harvard, 1991.

[6] D. Hochbaum and D. Shmoys, A Polynomial Approximation Scheme for Scheduling on Uniform Processors:
Using the Dual Approximation Approach, SIAM Journal on Computing, 539–551, 1988.

