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In cloud computing we have pools of computing, memory, and network resources and we desire to allocate
them to users in order to build applications. A generic way to allocate resources is by designing virtual networks,
called slices, which are built by resource units from the available pools. For example, network functionality like
firewalls, caches, and authentication can be performed by software middleboxes, called Virtual Network Functions
(VNFs). The VNFs can run at different cloud locations on general purpose computing hardware, and traffic can be
steered among them remotely using Software Defined Networks (SDN). Combining these two enabling technologies,
VNFs and SDN, it becomes possible to launch applications when-and-where, satisfying diverse and demanding
requirements, in the form of network slices [23]. Examples of such applications include but are not limited to:
(i) control of autonomous vehicles, (ii) virtual/augmented reality and remote surgery, (iii) high accuracy industry
communications, and (iv) control of robots and smart grids. The contribution of network slicing to these applications
is that it will allow them to co-exist on the same infrastructure. However, to effectively allocate resources to these
different slices, we require a nimble controller that continuously solves resource allocation problems and quickly
decides what is the appropriate embedding of the virtual network.

This writeup provides the definition of the Virtual Network Embedding problem, which can be used to determine
the optimal resource allocation for virtual networks. We also provide a proof of the complexity of this problem in
the case of splittable flows.

4.1 Virtual Network Embedding

In the problem of Virtual Network Embedding (VNE) with unsplittable flows (termed hereinafter VNE-UF) we are
given a physical network with costs and capacities on links and we are asked to find an embedding of a virtual
network onto the physical with minimum cost [11]. The virtual network consists of a graph with virtual nodes
(vnodes) and virtual links (vlinks), and its embedding consists in assigning each vnode to a physical node among a
set of options, and each vlink to a path in the physical network connecting the corresponding vnode embeddings,
see Fig. 4.1. In cloud computing, the physical network plays the role of available resource pools, and the virtual
network plays the role of (i) a user application, or (ii) a nested virtual infrastructure.

Figure 4.1: Virtual network embedding with unsplittable flow.

Physical network: Our network infrastructure is described by a graph P = (N,L, b, c) with physical nodes N
and links L. The total amount of flow that can be routed through link l ∈ L is limited by capacity bl, and there is
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a routing cost cl for each unit of flow. Depending on the application, the costs may be monetary (e.g. when renting
resources), or refer to metrics such as energy and congestion.

Virtual network: We receive requests for virtual networks to be implemented on the physical infrastructure.
A request is depicted by another graph G = (V,E,M ,d), with virtual nodes (vnodes) V and virtual links (vlinks)
E. Each vnode v ∈ V has a set of options Mv ⊆ N , i.e., physical nodes where it can be embedded. Each vlink
e ∈ E is associated to a demand de, which denotes the total amount of flow that will be circulated on the virtual
network over this vlink.

Virtual network embedding for unsplittable flow: The embedding of G on P in the unsplittable flow
scenario asks for the embedding of vnodes V and the embedding of vlinks E. To embed vnode v we simply need to
pick one physical node from the options Mv. This can be achieved by the use of binary variables xvn ∈ {0, 1} that
take value 1 iff the vnode v is embedded on node n. To embed vlink e = (v1, v2) we need to find an acyclic path in
the physical network P that connects the embeddings of v1, v2, i.e. that connects two physical nodes n1, n2 such
that xv1n1

= xv2n2
= 1. Let yel ∈ {0, 1} take value 1 to denote that vlink e is embedded on a path that includes

link l and 0 otherwise. For each vlink e = (v1, v2), ensuring that the link embedding takes the form of a path on
the physical network corresponds to certain flow-type constraints at each physical node:∑

j∈Out(n)

ye(n,j) −
∑

j∈In(n)

ye(j,n) = xv1n − xv2n, ∀n ∈ N,

where In(.) and Out(.) denote the set of incoming and outgoing neighbor nodes respectively. Observe that the term
xv1n − xv2n can take values 1, 0,−1 depending on whether the inspected node n is a source, an intermediate, or a
destination node of the path, as is customary with flow conservations.

The objective is to find a feasible virtual network embedding that minimizes the total cost. This leads to the
problem of Minimum Cost Virtual Network Embedding with Unsplittable Flow (VNE-UF), formalized in (4.1)-(4.4).

VNE-UF:

minimize
x∈{0,1}V N

y∈{0,1}EL

∑
e∈E
l∈L

cldeyel (4.1)

subject to
∑
e∈E

deyel ≤ bl, ∀l ∈ L, (4.2)∑
n∈N

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V, (4.3)∑
j

ye(n,j) −
∑
j

ye(j,n) = xv1n − xv2n,∀n ∈ N. (4.4)

The objective
∑

e∈E,l∈L cldeyel reflects the total cost of physical link usage by our vlink embeddings. Constraint
(4.2) is the link capacity constraint, constraint (4.3) ensures that vnode v is embedded only once and only at
available options Mv, while constraint (4.4) is the flow conservation mentioned above.

The VNE-UF is very general as it subsumes a number of important problems such as (i) the resource allocation
for network slices [22] (ii) the VNF chaining problem [3], (iii) the joing optimization of routing and VNF placement
[1], (iv) the optimal functional split in C-RAN [18], (v) the embedding of computation graphs on networks [24],
and (v) the minimum cost multicommodity flow problem [9]. In extended variants, it might be useful to consider
(i) multiple virtual networks [4], (ii) QoS and survivability constraints [22], as well as (iii) online variants [7, 25].

The VNE-UF problem is an Integer Linear Program. Fixing the node embedding, i.e., assuming Mv sets are all
singletons, the problem becomes the well-known minimum cost unsplittable multicommodity flow, which is known
to be NP–hard [9]. In [21] it was shown that VNE-UF is APX-hard, i.e. it is NP–hard to approximate within a
constant factor.

4.2 Virtual Network Embedding with Splittable Flows

In general, we would like to simplify the VNE-UF problem as much as possible such that its solution is still useful.
To this end, note that splitting the flow is possible in many modern SDN systems [26]. Hence, in this paper we
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Figure 4.2: An example of a virtual network embedding with splittable flow. The vlink demands are split over
multiple paths, which constitute a splittable flow.

consider the VNE problem with splittable flows (VNE-SF), where instead of paths, the vlinks are embedded with
the form of a splittable flow, i.e., the vlink demand can be transported over multiple paths. We remark that splitting
the VNF placement over multiple computing nodes is also possible by means of resource disaggregation [16, 5], but
it creates the overhead of maintaining the state consistency between the different parts of the VNF, and hence we
leave this consideration out of scope. We may observe that VNE-SF is significantly easier than VNE-UF: if we
fix the node embedding as before, the remaining problem is a Linear Program (LP) solvable in polynomial time.
Below, we show that the VNE-SF remains NP–hard emplying a reduction from the 3-SAT problem.

4.2.1 VNE for Splittable Flow

We relax the integrality of the vlink embedding variables yel and allow the embedded vlinks to circulate traffic in
the form of a splittable flow, which flows over a set of paths instead of a single path. This can be done by simply
letting yel ∈ [0, 1], in which case yel denotes the fraction of vlink demand de which is routed over physical link l.
The corresponding problem becomes:

VNE-SF:

minimize
x∈{0,1}V N

y∈[0,1]EL

∑
e∈E
l∈L

cldeyel (4.5)

subject to
∑
e∈E

deyel ≤ bl, ∀l ∈ L, (4.6)∑
n∈N

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V, (4.7)∑
j

ye(n,j) −
∑
j

ye(j,n) = xv1n − xv2n,∀n ∈ N. (4.8)

4.2.2 The Multipartite Graph

Fundamental to our approach is the construction of the multiparite graph Ĝ = (V̂ , Ê, ĉ), which aims to capture the
combinatorial structure of embedding options. The nodes V̂ are defined to be the union1 of all candidate physical
nodes V̂ = ∪v∈V Mv , and the links Ê are defined in the following way. First, for each vlink e = (v1, v2) ∈ E we

1Taking the union as the naming convention works only for disjoint sets Mv (but simplifies exposition). In case they are not disjoint,
the multipartite graph can be formulated with alternative naming convention such that each physical node appears as many times as
in the sets Mv .



Lecture 4: Network Slicing 4-4

Figure 4.3: An example of a multipartite graph construction.

identify the two node subsets Mv1 ,Mv2 and then we denote with ER(l) the links of the utility graph formed by
these two subsets (i.e. we connect all nodes of Mv1 to all nodes of Mv2 . Ultimately, we define ER = ∪e∈EER(l).
Last, on each link e = (n1, n2) ∈ Ê we introduce the cost ĉe which equals to the shortest path cost connecting the
two physical nodes n1, n2 ∈ N . We provide in fig. 4.3 a pictorial example.

We note that the multipartite graph can be constructed in polynomial time by computing all involved shortest
paths, which can be done in, e.g., O(|N |3) time via Floyd-Warshall.

Recall that xvn is 1 iff vnode v is embedded on physical node n. Consider the following subgraph selection
problem, which we term the multipartite graph embedding.

MGE:

minimize
x∈{0,1}V N

∑
v∈V
u∈V

∑
i∈N
j∈N

Cij,vuxvixuj (4.9)

s.t.
∑
n∈N

xvn = 1, xvn = 0, if n /∈Mv, ∀v ∈ V, (4.10)

where Cij,vu =

{
ĉijdvu if i 6= j
0 otherwise.

Consider the condition bl >
∑

e∈E de, ∀l ∈ L. If this condition is true, then under any embedding the link
capacity constraint (4.6) is satisfied. We call this condition “loose capacities”.

Lemma 4.1 MGE and VNE-SF are equivalent problems under the condition of loose capacities.

The proof of the lemma is straightforward by noticing that under loose capacities, an optimal solution of VNE-
SF will always be routed over shortest paths, hence the cost used in the multipartite graph is always the correct
one.

4.2.3 The 3-SAT Problem

In this subsection we give a brief reminder of the NP–complete [6] 3-SAT problem. Consider N Boolean variables
x1, . . . , xN . A clause is a disjunction of literals e.g., (x2 ∨ x4 ∨ x7), where a literal is a variable xi or its logical
negation xi. In the 3-SAT problem, there is a conjunction of a finite number of clauses, each clause has exactly
three literals and the problem is to know if there is any assignment of the variables which results in the expression
evaluating to True, that is, if the expression is satisfiable. E.g., the following expression is satisfiable as can be
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confirmed by the assignment x1 = True, x2 = False, x3 = True, x4 = True

C(x) = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) (4.11)

∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4), (4.12)

which we can write more compactly as

C(x) = C1(x) ∧ C2(x) ∧ C3(x) ∧ C4(x)

with Ci(x) defined in the obvious way.

4.2.4 Complexity of VNE-SF

Theorem 4.2 The VNE-SF problem is NP–hard.

Proof: We show that the decision version of the VNE-SF problem is NP-complete by reduction from 3-SAT. We
will assume that we are given a black box algorithm that can solve in polynomial time any instance of the VNE-SF,
and then we will show that we can apply this black box algorithm on the multipartite graph to decide any instance
of the 3-SAT decision problem in polynomial time, which completes the reduction.

Consider an arbitrary instance of the 3-SAT problem C(x) =
∧K

k=1 Ck(x). The multipartite graph Ĝ = (V̂ , Ê, ĉ)
is constructed from the 3-SAT problem instance as follows: Each instance of a literal is given its own variable,
meaning that if the literal is in more than one clause, there will be a variable for each of those clauses, and the
clauses define the partitions. Thus, with slight abuse of notation, V̂ = {vki : xi ∈ Ck or xi ∈ Ck} (we may assume
that no clause contain a literal and its negation since this is always true and can be eliminated from the problem).

The clauses Ck define a partition of the vertex set in the obvious way, and the there is an edge between every
pair of nodes that are in different partitions/clauses. The cost of an edge e = (vki , v

l
j) is 0 unless i = j and they

represent negations of each other, i.e., vki represents xi (or xi) and vli represents xi (xi). In the latter case, the cost
is 1. Hence, we give cost 1 to edges that connect literals that cannot both be true at the same time otherwise give
it cost 0 as shown in the figure.

Figure 4.4: Multipartite graph for two clauses of a 3-SAT instance.

Since the number of clauses in the expression C(x) is at most polynomial to N , the multipartite graph for all
the clauses can be built in polynomial time as well.

Now the question “is there a x ∈ {0, 1}N that satisfies C(x) = 1?” can be answered in the following manner. We
create the multipartite graph as above, and then call the given black box algorithm, which provides the minimum
cost embedding in polynomial time. If the cost of the embedding is 0, the answer is YES, if the cost is positive, the
answer is NO.

To verify this, note that a zero cost embedding allows a selection of a node at each clause that can be set to
1 without any conflicts with any other clause. Additionally, if the minimum cost is positive, it means that there
exists no zero cost embedding, and hence no conflict-free allocation to make all clauses 1.
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